Supporting Information

ABEEM/MM OH ${ }^{-}$Models for

$\mathrm{OH}^{-}\left(\mathrm{H}_{2} \mathrm{O}\right)_{n}$ Clusters and Aqueous OH^{-}:

Structures, Charge Distributions, and Binding

Energies

Hua Shi ${ }^{\dagger}{ }^{\dagger}$, , Li-Dong Gong ${ }^{\dagger *}$, Cui Liu^{\dagger}, Li-Nan Lu^{\dagger}, and Zhong-Zhi Yang ${ }^{\dagger *}$
${ }^{\dagger}$ School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, People's Republic of China
${ }^{\text {TS }}$ School of Marine Science and Environment, Dalian Ocean University, Dalian 116023, People's Republic of China
Corresponding authors E-mail address:
gongjw@lnnu.edu.cn (Li-Dong Gong)
zzyang@lnnu.edu.cn (Zhong-Zhi Yang)
Tel: +86 411-82159607

1. THE THEORETICAL FORMULAS

1.1. The Theoretical Formulas of the ABEEM/MM-I.

$$
\begin{align*}
& \chi_{\mathrm{OOH}_{\left(\mathrm{H}^{-}\right)}}=\chi_{\mathrm{HOH}_{\left(\mathrm{H}^{-}\right)}}=\chi_{\left.\mathrm{OH(H} \mathrm{OH}^{-}\right)}=\bar{\chi}_{\mathrm{OH}^{-}} \tag{S1}\\
& \chi_{I i}=\chi_{I(i-j)}=\chi_{I((p))}=\cdots=\bar{\chi}_{I} \tag{S2}\\
& \chi_{J i}=\chi_{J(i-j)}=\chi_{J(i p)}=\cdots=\bar{\chi}_{J} \tag{S3}
\end{align*}
$$

Eqs. (S1)-(S3) are the electronegativity equalization equations of the ABEEM/MM-I model. Eq. (S1) is the electronegativity equalization equations of the OH^{-}, and the remaining equations are those of the water molecules. Eq. (S1) represents that the electronegativities of O atom, H atom, and $\mathrm{O}-\mathrm{H}$ bond of OH^{-}are equal to the electronegativity of the OH^{-}. Herein, $\chi_{\left.\mathrm{OOH}^{-}\right)}, \chi_{\mathrm{H}_{\left(\mathrm{OH}^{-}\right)}}$, and $\chi_{\mathrm{OH}(\mathrm{OH})}$ are the electronegativities of O atom, H atom, and $\mathrm{O}-\mathrm{H}$ bond of the OH^{-}, and $\bar{\chi}_{\mathrm{OH}^{-}}$is the global electronegativity of the OH^{-}. Eq. (S2) represents that the electronegativities of each atom, each bond, and each lone-pair electron in water molecule I are equal to the electronegativity of the water molecule I. Herein, $\chi_{I i}, \chi_{I(i-j)}$, and $\chi_{I(l p)}$ are the electronegativities of atom i, bond $i-j$, and lone-pair electron $l p$ in water molecule I, and $\bar{\chi}_{I}$ is the global electronegativity of water molecule I. The remaining equations are the electronegativity equalization equations of other water molecules.

$$
\begin{equation*}
q_{{\mathrm{O}\left(\mathrm{OH}^{-}\right)}}+q_{{\mathrm{H}\left(\mathrm{OH}^{-}\right)}}+q_{\mathrm{O}-\mathrm{H}\left(\mathrm{OH}^{-}\right)}=-1 \tag{S4}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i}^{N_{i}} q_{I i}+\sum_{i-j}^{N_{i-j}} q_{I(i-j)}+\sum_{l p}^{N_{l p}} q_{I(l p)}=0 \tag{S5}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i}^{N_{i}} q_{J i}+\sum_{i-j}^{N_{i-j}} q_{J(i-j)}+\sum_{l p}^{N_{l p}} q_{J(l p)}=0 \tag{S6}
\end{equation*}
$$

Eqs. (S4)-(S6) are charge conservation functions of the ABEEM/MM-I model. Eq. (S4) represents that the total charge of the hydroxide ion is constrained to be $-1.0 e$. Herein, $q_{\mathrm{O}_{\left(\mathrm{OH}^{-}\right)}}, q_{\mathrm{H}_{\left(\mathrm{OH}^{-}\right)}}$, and $q_{\mathrm{O} \mathrm{H}\left(\mathrm{OH}^{-}\right)}$are the charges of O atom, H atom, and $\mathrm{O}-\mathrm{H}$ bond of OH^{-}. Eq. (S5) represents that the total charge of the water molecule I is zero. Herein, $q_{I i}, q_{(i-j)}$, and $q_{I(q)}$ are the charges of atom i, bond $i-j$, and lone-pair electron $l p$ in water molecule I. The remaining equations represent that other water molecules are electric neutral.

1.2. The Theoretical Formulas of the ABEEM/MM-II.

$$
\begin{align*}
& \chi_{\mathrm{O}(\mathrm{OH})}=\chi_{\mathrm{H}(\mathrm{OH})}=\chi_{\mathrm{O}-\mathrm{H}(\mathrm{OH})}=\chi_{F i}=\chi_{F(i-j)}=\chi_{F(l p)}=\cdots=\bar{\chi}_{L} \tag{S7}\\
& \chi_{I i}=\chi_{I(i-j)}=\chi_{I(l p)}=\cdots=\bar{\chi}_{I} \tag{S8}\\
& \chi_{J i}=\chi_{J(i-j)}=\chi_{J((p)}=\cdots=\bar{\chi}_{J} \tag{S9}
\end{align*}
$$

Eqs. (S7)-(S9) are the electronegativity equalization equations of the ABEEM/MM-II model. Eq. (S7) is the electronegativity equalization equation of the OH^{-}and its first-shell water molecules, and the remaining equations are those of the external-shell water molecules. Eq. (S7) represents that the electronegativities of each atom, each bond, and each lone-pair electron of the OH^{-}and water molecules in the first hydration shell are equal to the global electronegativity of the first shell including the OH^{-}. Herein, $\chi_{F i}$, $\chi_{F(i-j)}$, and $\chi_{F(l p)}$ are the electronegativities of atom i, bond $i-j$, and lone-pair electron $l p$ of the first-shell water molecule F. Eq. (S8) represents that the electronegativities of each atom, each bond, and each lone-pair electron in the external-shell water molecule I are
equal to the electronegativity of the water molecule I. The remaining equations are the electronegativity equalization equations of other external-shell water molecules.

$$
\begin{align*}
& q_{\mathrm{O}\left(\mathrm{OH}^{-}\right)}+q_{\mathrm{H}\left(\mathrm{OH}^{-}\right)}+q_{\mathrm{O} \mathrm{H}\left(\mathrm{OH}^{-}\right)}+\sum_{F}^{M}\left(\sum_{i}^{N_{i}} q_{F i}+\sum_{i-j}^{N_{i-j}} q_{F(i-j)}+\sum_{l p}^{N_{l p}} q_{F(l p)}\right)=-1 \tag{S10}\\
& \sum_{i}^{N_{i}} q_{I i}+\sum_{i-j}^{N_{i-j}} q_{I(i-j)}+\sum_{l p}^{N_{l p}} q_{I(l p)}=0 \tag{S11}\\
& \sum_{i}^{N_{i}} q_{J i}+\sum_{i-j}^{N_{i-j}} q_{J(i-j)}+\sum_{l p}^{N_{l p}} q_{J(l p)}=0 \tag{S12}
\end{align*}
$$

Eqs. (S10)-(S12) are charge conservation functions of the ABEEM/MM-II model. Eq. (S10) represents that the total charge of the OH^{-}and its first-shell water molecules is constrained to be $-1.0 e$. Herein, $q_{F i}, q_{F(i-j)}$, and $q_{F(p)}$ are the charges of atom i, bond $i-j$, and lone-pair electron $l p$ in first-shell water molecule F. Eq. (S11) represents that the total charge of the external-shell water molecule I is zero. The remaining equations represent that other external-shell water molecules are electric neutral.

2. Parameters of the ABEEM/MM

Parameters of water molecule in external shells are as same as before ${ }^{1}$. The parameters of the OH^{-}and water molecules in its hydration first shell are listed in the following. The parameters of the ABEEM/MM-I and the ABEEM/MM-II are listed in Table S1 and S2, respectively. The parameters of the optimized correction functions of hydrogen bonds are listed in Table S3.

Table S1. The ABEEM/MM-I Parameters

	χ^{*}	$2 \eta^{*}$	C	D	$r_{\mathrm{OH}}(\AA)$	$k_{\text {OH }}$	θ	k_{θ}	$\sigma(\AA)$	$\varepsilon(\mathrm{kcal} / \mathrm{mol})$
$\mathrm{H}\left(\mathrm{OH}^{-}\right)$	5.023	60.000							1.500	0.030
$\mathrm{O}\left(\mathrm{OH}^{-}\right)$	1.700	0.500							3.200	0.250
$\mathrm{O}-\mathrm{H}\left(\mathrm{OH}^{-}\right)$	8.000	50.000			0.9670	529.6				
H (firstshell- $\mathrm{H}_{2} \mathrm{O}$)	2.123	12.000	2.161						2.240	0.005
O (firstshell- $\mathrm{H}_{2} \mathrm{O}$)	3.700	1.000	11.493	5.312					3.051	0.044
O-H (firstshell- $\mathrm{H}_{2} \mathrm{O}$)	5.136	24.767	2.161	11.493	0.9830	535.6				
H-O-H (firstshell- $\mathrm{H}_{2} \mathrm{O}$)							104.52	34.05		
$l p\left(\right.$ firstshell $-\mathrm{H}_{2} \mathrm{O}$)	3.700	0.500	1.612							

Table S2. The ABEEM/MM-II Parameters

	χ^{*}	$2 \eta^{*}$	C	D	$r_{\mathrm{OH}}(\AA)$	$k_{\text {OH }}$	θ	k_{θ}	$\sigma(\AA)$	$\varepsilon(\mathrm{kcal} / \mathrm{mol})$
$\mathrm{H}\left(\mathrm{OH}^{-}\right)$	2.023	13.220							1.500	0.0200
$\mathrm{O}\left(\mathrm{OH}^{-}\right)$	1.685	8.527							3.420	0.2512
$\mathrm{O}-\mathrm{H}\left(\mathrm{OH}^{-}\right)$	10.640	4.470			0.9730	530.6				
H (firstshell- $\mathrm{H}_{2} \mathrm{O}$)	2.023	8.840	2.161						2.240	0.0020
O (firstshell- $\mathrm{H}_{2} \mathrm{O}$)	3.373	0.100	11.493	5.312					3.051	0.0440
$\mathrm{O}-\mathrm{H}\left(\right.$ firstshell $-\mathrm{H}_{2} \mathrm{O}$)	5.136	38.500	2.161	11.493	0.9830	533.6				
H-O-H (firstshell- $\mathrm{H}_{2} \mathrm{O}$)							104.52	34.05		
$l p\left(\right.$ firstshell- $\mathrm{H}_{2} \mathrm{O}$)	3.878	13.950	5.312							

Table S3. The Optimized Correction Functions of Hydrogen Bonds

		A	B	U	V
ABEEM/MM-I	$k_{\mathrm{HB}\left(R_{\mathrm{O}(\text { OH- }), l(\mathrm{H})}\right)}$	1.1700	0.1057	1.7500	0.0430
	$k_{\mathrm{HB}\left(R_{R H}, J(p)\right.}$	0.6831	0.0894	1.1510	0.0697
ABEEM/MM-II	$\left.k_{\mathrm{HB}\left(R_{\mathrm{OOH}} \mathrm{O}^{\prime}, l(\mathrm{H})\right.}\right)$	0.9477	0.0797	1.8000	0.0430
	$k_{\mathrm{HB}\left(R_{H, J(p)}\right)}$	0.6210	0.0813	1.1510	0.0697

[^0]3. The Results of Optimized Structures $\left(R_{0-\mathrm{H}}, \bar{R}_{0 \cdots \mathrm{H}}, \bar{\theta}_{\mathrm{H} \cdots \cdots \mathrm{H}}\right.$, and $\left.\bar{\theta}_{0 \cdots \mathrm{H}-\mathrm{O}}\right)$ and Binding Energies for the $\mathbf{O H}^{-}\left(\mathbf{H}_{\mathbf{2}} \mathbf{O}\right)_{\boldsymbol{n}}(\boldsymbol{n}=\mathbf{1 - 8})$

Clusters.

Table S4. Optimized Structures ($R_{0-\mathrm{H}}, \bar{R}_{0 \ldots \mathrm{H}}, \bar{\theta}_{\mathrm{H} \cdots \mathrm{O} \cdot \mathrm{H}}$, and $\bar{\theta}_{0 \cdots \mathrm{H}-\mathrm{o}}$) of the $\mathrm{OH}^{-}\left(\mathbf{H}_{2} \mathbf{O}\right)_{n}(\boldsymbol{n}=\mathbf{1 - 8})$ Clusters Obtained from the Two ABEEM/MM

Models and the $\boldsymbol{A b}$ Initio Calculations

Cluster	$R_{\mathrm{O}-\mathrm{H}}{ }^{a}(\AA)$			$\bar{R}_{\mathrm{O} \ldots \mathrm{H}}{ }^{b}$			$\bar{\theta}_{\mathrm{H} \ldots \mathrm{O} \ldots \mathrm{H}}{ }^{c}$			$\bar{\theta}_{\mathrm{O} \cdot \mathrm{H}-\mathrm{O}}{ }^{d}\left({ }^{\mathrm{o}}\right)$		
	MP2/aug-c-pvDZ	ABEEM/MM-I	ABEEM/MM-II	MP2/aug-cc-pVDZ	ABEEM/MM-I	ABEEM/MM-II	MP2/aug-cc-pVDZ	ABEEM/MM-I	ABEEM/MM -II	MP2/aug-cc-pVDZ	AbEEM/MM-I	ABEEM/MM -II
$1(1+0)$	0.970	0.965	0.968	1.483	1.534	1.571				176.2	177.2	176.8
$2(2+0)$	0.969	0.966	0.965	1.615	1.629	1.646	85.4	85.0	84.5	170.4	171.1	171.2
3-a (3+0)	0.966	0.964	0.953	1.709	1.711	1.729	84.7	84.6	83.8	160.0	160.5	161.3
$3-b(2+1)$	0.968	0.963	0.963	1.549	1.568	1.576	107.0	106.6	106.2	173.3	173.8	173.8
4-a (4+0)	0.967	0.967	0.972	1.774	1.771	1.858	75.1	75.1	71.2	162.5	162.8	167.4
$4-b(3+1)$	0.966	0.963	0.957	1.680	1.685	1.695	85.9	85.5	85.2	161.1	161.9	162.2
4-c (3+1)	0.966	0.964	0.961	1.670	1.675	1.685	97.7	97.5	97.1	168.2	168.6	168.8
5-a (5+0)	0.969	0.969	0.971	1.845	1.782	1.843	67.2	67.9	67.2	168.6	169.3	168.7
$5-b(4+1)$	0.968	0.967	0.967	1.744	1.743	1.746	79.1	79.1	79.1	167.4	167.6	167.6
5-c (4+1)	0.967	0.967	0.967	1.730	1.729	1.733	79.9	79.9	79.9	168.8	169.3	169.3
5-d (4+1)	0.967	0.968	0.965	1.755	1.753	1.758	79.6	79.6	79.5	165.6	166.0	166.0
5-e (3+2)	0.968	0.967	0.968	1.616	1.626	1.627	110.5	110.4	110.4	175.4	175.7	175.6
6-a (5+1)	0.969	0.970	0.970	1.859	1.854	1.856	71.6	71.6	71.7	164.4	164.6	164.4
$6-b(3+3)$	0.966	0.963	0.960	1.659	1.666	1.674	98.2	98.0	97.7	164.9	165.1	165.4
$6-c(3+3)$	0.967	0.966	0.963	1.635	1.642	1.647	100.3	100.0	99.9	169.9	171.0	170.5
$6-d(3+3)$	0.968	0.968	0.966	1.585	1.594	1.596	108.8	108.7	108.7	178.3	179.2	179.0
7-a (4+3)	0.968	0.968	0.966	1.741	1.740	1.744	80.9	80.9	80.8	168.2	168.7	168.6
$7-b(3+4)$	0.967	0.966	0.964	1.637	1.643	1.647	99.4	99.2	99.1	169.1	170.0	169.6
7-c (4+3)	0.968	0.968	0.965	1.741	1.740	1.746	82.5	82.4	82.3	166.1	166.3	166.5
$8-a(3+5)$	0.967	0.964	0.962	1.612	1.628	1.628	100.4	100.0	100.0	170.1	170.7	170.4
$8-b(4+4)$	0.968	0.967	0.966	1.736	1.736	1.739	86.3	86.3	86.2	170.1	169.9	169.9

MAD^{e}	0.002	0.004	0.011	0.018	0.2	0.5

 absolute deviation of the results of the ABEEM/MM models compared to those of MP2/aug-cc-pVDZ.

Table S5. Optimized Structures $\left(R_{0-\mathrm{H}}, \bar{R}_{\mathrm{O} \cdot \mathrm{H}}, \bar{\theta}_{\mathrm{H} \cdots \mathrm{O} \cdot \mathrm{H}}\right.$, and $\left.\bar{\theta}_{0 \cdot \mathrm{H}-\mathrm{O}}\right)$ of the $\mathbf{O H}\left(\mathrm{H}_{2} \mathbf{O}\right)_{n}(\boldsymbol{n}=1-8)$ Clusters Obtained from the OPLS/AA-FF, the
OPLS-SMOOTH/AA-FF, and the $\boldsymbol{A b}$ Initio Calculations

Cluster	$R_{\mathrm{O}-\mathrm{H}}{ }^{a}(\AA)$			$\bar{R}_{\mathrm{O} \cdot \mathrm{H}}{ }^{b}$			$\bar{\theta}_{\mathrm{H} \ldots \mathrm{O} \ldots \mathrm{H}}{ }^{c}$			$\bar{\theta}_{\mathrm{O} \ldots \mathrm{H}-\mathrm{O}}{ }^{d}$		
	$\begin{gathered} \text { MP2/aug-cc- } \\ \text { pVDZ } \\ \hline \end{gathered}$	OPLS/AA-FF	$\begin{gathered} \text { OPLS- } \\ \text { SMOOTH/A-FF } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { MP2/aug-cc- } \\ \text { pVDZ } \\ \hline \end{gathered}$	OPLS/AA-FF	$\underset{\text { FF }}{\substack{\text { OPLS-SMOOTH/AA- } \\ \hline}}$	$\begin{gathered} \substack{\text { MP2/aug-cc- } \\ \text { pVDZ }} \\ \hline \end{gathered}$	OPLS/AA-FF	$\begin{gathered} \hline \text { OPLS-SMOOTH/AA- } \\ \hline \end{gathered}$	$\begin{gathered} \text { MP2/aug-cc- } \\ \text { pVDZ } \\ \hline \end{gathered}$	OPLS/AA-FF	$\underset{\text { FF }}{\substack{\text { OPLSSMOOTH/AA- }}}$
$1(1+0)$	0.970	0.947	0.948	1.483	1.609	1.554				176.2	165.1	166.0
$2(2+0)$	0.969	0.950	0.950	1.615	1.639	1.595	85.4	75.6	77.7	170.4	164.4	165.2
3-a (3+0)	0.966	0.952	0.953	1.709	1.667	1.630	84.7	78.2	79.9	160.0	162.1	163.1
$3-b(2+1)$	0.968	0.951	0.951	1.549	1.589	1.533	107.0	95.0	99.3	173.3	169.4	169.9
4-a (4+0)	0.967	0.955	0.956	1.774	1.682	1.654	75.1	72.4	73.6	162.5	163.9	164.9
$4-b(3+1)$	0.966			1.680			85.9			161.1		
4-c (3+1)	0.966	0.954	0.954	1.670	1.627	1.586	97.7	90.9	92.4	168.2	167.2	167.7
5-a (5+0)	0.969	0.958	0.959	1.845	1.698	1.685	67.2	67.0	67.7	168.6	168.2	168.8
$5-b(4+1)$	0.968	0.956	0.956	1.744	1.659	1.629	79.1	75.9	77.2	167.4	168.0	168.6
5-c (4+1)	0.967	0.956	0.957	1.730	1.656	1.625	79.9	76.2	77.5	168.8	168.0	168.6
5-d (4+1)	0.967	0.956	0.957	1.755	1.659	1.628	79.6	79.9	81.1	165.6	167.2	167.9
5-e (3+2)	0.968	0.956	0.956	1.616	1.593	1.543	110.5	104.0	105.5	175.4	173.6	174.0
6-a (5+1)	0.969	0.959	0.959	1.859	1.693	1.673	71.6	75.1	76.1	164.4	166.2	166.8
$6-b(3+3)$	0.966	0.955	0.956	1.659	1.595	1.545	98.2	94.1	95.9	164.9	172.5	172.8
6-c (3+3)	0.967			1.635			100.3			169.9		
$6-d(3+3)$	0.968			1.585			108.8			178.3		
7-a (4+3)	0.968			1.741			80.9			168.2		
$7-b(3+4)$	0.967	0.955	0.955	1.637	1.608	1.562	99.4	100.7	102.2	169.1	169.9	170.6
$7-c(4+3)$	0.968	0.957	0.958	1.741	1.640	1.606	82.5	82.6	83.5	166.1	169.4	170.2
8-a (3+5)	0.967			1.612			100.4			170.1		
$8-b(4+4)$	0.968	0.959	0.960	1.736	1.622	1.586	86.3	89.3	90.4	170.1	175.1	175.3
MAD^{e}		0.013	0.012		0.346	0.102		4.2	3.5		3.1	3.2

${ }^{a} R_{\mathrm{O}-\mathrm{H}}$ is the bond length of $\mathrm{OH}^{-}{ }^{b} \bar{R}_{\mathrm{O} \cdots \mathrm{H}}$ is the average hydrogen bond length formed by the oxygen atom of OH^{-}and the hydrogen atom of a first-shell water molecules. ${ }^{c} \bar{\theta}_{\mathrm{H} \ldots \mathrm{O} \cdot \mathrm{H}}$ is the average angle between two neighboring hydrogen bonds in the first shell. ${ }^{d} \bar{\theta}_{\mathrm{O}} \ldots \mathrm{H}-\mathrm{O}$ is the average hydrogen bond angle formed by the O atom of OH - and the $\mathrm{H}-\mathrm{O}$ bond of a first-shell water molecule. ${ }^{e} \mathrm{MAD}$ is the mean absolute deviation of the results of the OPLS/AA-FF and OPLS-SMOOTH/AA-FF compared to those of MP2/aug-cc-pVDZ.

Table S6. Binding Energies (in kcal/mol) of $\mathbf{O H}^{-}\left(\mathrm{H}_{2} \mathrm{O}\right)_{n}(n=1-8)$ Obtained from the Two ABEEM/MM Models, the OPLS/AA-FF, the OPLS-SMOOTH/AA-FF, and the $\boldsymbol{A b}$ Initio Calculations

Cluster	ABEEM/MM-I	ABEEM/MM-II	OPLS/AA-FF	OPLS- SMOOTH/AA-FF	MP2/aug-cc-pVDZ
$1(1+0)$	-22.88	-24.49	-24.36	-24.42	-23.46
$2(2+0)$	-41.99	-36.29	-47.43	-47.29	-41.47
$3-a(3+0)$	-58.59	-56.16	-69.61	-69.16	-57.09
$3-b(2+1)$	-54.35	-56.59	-63.75	-63.68	-56.32
$4-a(4+0)$	-74.49	-69.39	-89.77	-88.93	-71.01
$4-b(3+1)$	-68.42	-75.42			-68.64
$4-c(3+1)$	-68.34	-72.76	-85.19	-84.77	-69.60
$5-a(5+0)$	-87.67	-78.59	-106.38	-105.05	-80.71
$5-b(4+1)$	-85.43	-81.75	-103.55	-102.65	-82.50
$5-c(4+1)$	-83.82	-81.90	-103.08	-102.21	-82.53
$5-d(4+1)$	-84.13	-82.89	-104.12	-103.24	-83.51
$5-e(3+2)$	-80.45	-79.72	-97.46	-97.11	-82.35
$6-a(5+1)$	-98.56	-95.87	-122.00	-120.55	-93.95
$6-b(3+3)$	-97.18	-87.23	-113.04	-112.42	-92.71
$6-c(3+3)$	-87.19	-97.05			-94.02
$6-d(3+3)$	-84.53	-83.21		-91.88	
$7-a(4+3)$	-102.39	-116.63		-105.07	
$7-b(3+4)$	-100.44	-111.47	-120.85	-119.73	-105.78
$7-c(4+3)$	-106.00	-92.39	-126.71	-125.58	-103.62
$8-a(3+5)$	-121.77	-122.91	-123.54	-142.85	-113.56
$8-b(4+4)$	-126.76	5.09%	21.20%	-115.63	
MRE b	4.07%	-141.44			

${ }^{a}$ Binding energies were calculated with CP and ZPE corrections.
${ }^{b}$ MRE is the mean relative error of the results of the ABEEM/MM models, the OPLS/AA-FF, and the OPLS-SMOOTH/AA-FF compared to those of MP2/aug-cc-pVDZ.

4. The Results of Optimized Structures ($R_{\text {o- }}, \bar{R}_{0-\mathrm{H}}, \bar{\theta}_{\mathrm{H}-\mathrm{O-H}}$, and $\bar{\theta}_{\mathrm{o}_{-\mathrm{HO}}}$) and Binding Energies for the Larger

Clusters.

Table S7. Optimized Structures ($R_{\text {O-H }}, \bar{R}_{0-\mathrm{H}}, \bar{\theta}_{\mathrm{H}-\mathrm{o}-\mathrm{H}}$, and $\bar{\theta}_{0-\mathrm{H}-\mathrm{o}}$) of the Larger Clusters Obtained from the ABEEM/MM-I Model and the QM Calculations

Cluster	$R_{\text {O-H }}{ }^{a}(\AA)$		$\bar{R}_{\mathrm{O} \ldots \mathrm{H}}{ }^{\text {b }}$ (\AA)		$\bar{\theta}_{\mathrm{H} \ldots \mathrm{O} \ldots \mathrm{H}}{ }^{c}\left({ }^{\text {o }}\right.$)		$\bar{\theta}_{\mathrm{O} \ldots \mathrm{H}-\mathrm{O}}{ }^{d}\left({ }^{\text {o }}\right.$)	
	QM	ABEEM/MM-I	QM	ABEEM/MM-I	QM	ABEEM/MM-I	QM	ABEEM/MM-I
10(4+6)	0.969	0.970	1.738	1.736	83.2	83.2	170.0	170.0
$15(3+12)$	0.964	0.961	1.573	1.586	100.5	100.0	167.3	168.4
$23(3+20)$	0.965	0.963	1.549	1.559	107.0	106.9	173.4	173.4
MAD ${ }^{f}$		0.002		0.008		0.2°		$0.4{ }^{\circ}$

 the average angle between two neighboring hydrogen bonds in the first shell. ${ }^{d} \bar{\theta}_{\mathrm{O} \ldots \mathrm{H}-\mathrm{O}}$ is the average hydrogen bond angle formed by the O atom of OH and the $\mathrm{H}-\mathrm{O}$ bond of a first-shell water molecule. ${ }^{e}$ The QM results of $\mathrm{OH}^{-}\left(\mathrm{H}_{2} \mathrm{O}\right)_{10}$ are from MP2/aug-cc-pVDZ calculation and the results of $\mathrm{OH}^{-}\left(\mathrm{H}_{2} \mathrm{O}\right)_{n}(n=15,23)$ are from B3LYP/6-31++G(d,p) calculations. ${ }^{f}$ MAD is the mean absolute deviation of the results of the ABEEM/MM-I model compared to those of QM results.

Table S8. Binding Energies (in kcal/mol) of $\mathrm{OH}^{-}\left(\mathrm{H}_{2} \mathrm{O}\right)_{n}(n=10,15,23)$ from the ABEEM/MM-I Model, the OPLS/AA-FF, the OPLS-SMOOTH/AA-FF, and the QM Calculations

Cluster	ABEEM/MM-I	OPLS/AA-FF	OPLS- SMOOTH/AA-FF	QM $^{\boldsymbol{a}}$
$10(4+6)$	-127.5	-161.8	-159.7	-137.6
$15(3+12)$	-180.3			-188.9
$23(3+20)$	-293.7			-270.9
MRE b	6.67%			

${ }^{a}$ Binding energies were calculated with CP and ZPE corrections.
${ }^{b} \mathrm{MRE}$ is the mean relative error of the results of the ABEEM/MM-I model compared to those of QM results.

REFERENCES

1. Yang, Z.-Z.; Wu, Y.; Zhao, D.-X. Atom-Bond Electronegativity Equalization Method Fused into Molecular Mechanics. I. A Seven-Site Fluctuating Charge and Flexible Body Water Potential Function for Water Clusters. J. Chem. Phys. 2004, 120, 2541-2557

[^0]: ${ }^{\text {a }} k_{\mathrm{HB}\left(R_{\mathrm{OOH}),(\mathrm{H})}\right)}$ is the optimized correction function of the hydrogen bond between the oxygen atom of OH^{-}and the hydrogen atom of a first-shell water molecule in the HBIR.
 ${ }_{\mathrm{b}} k_{\mathrm{HB}\left(R_{H,,((p))}\right)}$ is the optimized correction function of the hydrogen bond between the hydrogen atom of a first-shell water molecule and the lone-pair electron $l p$ of an external-shell water molecule in the HBIR.

