Supporting Information

An Endoplasmic Reticulum Targeted Ratiometric Fluorescent Probe for Sensing of Hydrogen Sulfide in Living Cells and Zebrafish

Wei Shu, Shunping Zang, Chong Wang, Mengxu Gao, Jing Jing* and Xiaoling

Zhang*

Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.

E-mail address: hellojane@bit.edu.cn (J. Jing), zhangxl@bit.edu.cn (X.L. Zhang).

Contents

1. Experimental reagents and instruments	S3
 Normalized spectra of probe M-H₂S to H₂S The stability of M-H₂S at different pH values 	83
5. Determination of the Detection Limit	S4
6. The capabilities of $M-H_2S$ for detecting H_2S at different pH	
7. High-resolution mass spectra of reaction system	
8. Cytotoxicity assay	
9. Characterization data	S6

1. Experimental reagents and instruments

All other chemicals were obtained from commercial suppliers and used without further purification. Silica gel (200-300 mesh, Qingdao Haiyang Chemical Co.) was used for column chromatography. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker Advance at 400MHz or at 100 MHz, δ values are in parts per million relatives to TMS in DMSO-*d*₆. Mass spectra (MS) were measured with Bruker Apex IV FTMS using electrospray ionization (ESI). Absorption spectra were recorded on a Purkinje TU-1901 spectrophotometer. Fluorescence measurements were taken on a Hitachi F-7000 fluorescence spectrometer with a 10mm quartz cuvette. pH measurements were carried out with a pH acidometer (Mettler Toledo FE-30). Fluorescence imaging was observed under an Olympus IX81 confocal fluorescence microscope.

HeLa cells were cultured in high-glucose DMEM supplemented with 10% fetal bovine serum, 1% penicillin, and 1% streptomycin with 5% CO₂ at 37°C.

4-day-old zebrafish were obtained from Shanghai Feixi Biotechnology Co., Ltd.

2. Normalized spectra of probe M-H₂S to H₂S

Fig. S1. (A) Normalized UV–*vis* absorption spectra and fluorescence spectra of probe M-H₂S.
(B) Normalized UV–*vis* absorption spectra and fluorescence spectra of M-H₂S recognized after H₂S.

 λ_{ex} = 480 nm, slit width: $d_{ex} = d_{em} = 10$ nm, 10 mM PBS, pH 7.4, containing 10% DMSO, v/v at

room temperature.

3. The stability of M-H₂S at different pH values

Fig. S2. Fluorescent intensity (F_{650}/F_{560}) responses of M-H₂S (10 μ M) at different pH values (pH=5.0, 6.0, 7.4, 8.0). Spacing interval is 1 min.

4. Time response spectra of probe M-H₂S to H₂S

Fig. S3. UV-vis absorption A) and ratio intensity changes B) of M-H₂S (10 µM) upon addition

of H_2S (50 μ M). Fluorescence spectra C) and ratio intensity changes D) of **M-H₂S** (10 μ M) upon addition of H_2S (50 μ M).

5. Determination of the Detection Limit

According to IUPAC, the detection limits were determined based on the fluorescence titrations, carried out in PBS / DMSO (9:1, v/v), pH 7.4, using the following equation:

Detection limit =
$$3\sigma/k$$

where σ is the standard deviation of blank measurements and *k* is the slope of the plot of fluorescence intensity vs H₂S concentration. The standard deviations $\sigma = 0.0011$.

6. The capabilities of M-H₂S for detecting H₂S at different pH

Fig. S4. Fluorescence responses of $M-H_2S$ (10 μ M) in the absence and presence of H_2S (50

μM) at different pH.

7. High-resolution mass spectra of reaction system

Fig. S5. The HRMS of the product after the reaction between M-H₂S and H₂S.

8. Cytotoxicity assay

Fig. S6. MTT assay for estimating cell viability (%) of HeLa cells. The concentrations of probe

M-H₂S were used: 1: blank, 2: 5 μM, 3: 10μM, 4: 15 μM, 5: 20 μM, respectively.

9. Characterization data

Fig. S7. ¹H NMR spectral of compound M-1.

Fig. S8. HRMS spectral of compound M-1.

Fig. S10. HRMS spectral of compound M-OH.

Fig. S11. ¹H NMR spectral of compound M-H₂S.

Figure. S12 ¹³C NMR spectral of compound M-H₂S.

Fig. S13. HRMS spectral of compound M-H₂S.