Supporting Information

Initial analysis of the arylomycin \mathbf{D} antibiotics

Yun Xuan Tan ${ }^{\text {a }}$, David S. Peters ${ }^{\text {a }}$, Shawn I Walsh ${ }^{\text {a }}$, Matthew Holcomb ${ }^{\text {a }}$, Diogo Santos-Martins ${ }^{\text {b }}$, Stefano Forlib, Floyd E. Romesberga* ${ }^{\text {a }}$ Department of Chemistry, ${ }^{\text {b }}$ Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037 USA

Table of Contents

Procedures and characterization..S2
Table S1: Further optimization of the Suzuki-Miyaura reaction ...S13
Figure S1: Mass fragmentation analysis of actinocarbasin (positive mode)...S14
Figure S2: Mass fragmentation analysis of actinocarbasin (negative mode)..S15
References ..S15
NMR Spectra ...S16

Procedures and characterization

Trichloroacetimidate 3

To a stirred suspension of L-rhamnose monohydrate ($5 \mathrm{~g}, 27.4 \mathrm{mmol}$) in acetic anhydride $(25 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added 2-3 drops of conc. sulfuric acid. The suspension was stirred at $0^{\circ} \mathrm{C}$ for a further 30 minutes before it was diluted with EtOAc and water. The organic layer was washed sequentially with sat. NaHCO_{3}, water and brine, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was dissolved in THF $(25 \mathrm{~mL})$ and to it was added 40% methylamine in water ($7.1 \mathrm{~mL}, 3 \mathrm{eq}$.) at $0{ }^{\circ} \mathrm{C}$. The reaction was stirred at room temperature for a further 2 h before it was diluted with EtOAc and water, and extracted two more times with EtOAc. The organic layers were combined and sequentially washed with sat. $\mathrm{NH}_{4} \mathrm{Cl}$, water and brine, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(100 \mathrm{~mL})$. DBU ($0.82 \mathrm{~mL}, 5.48 \mathrm{mmol}, 0.2 \mathrm{eq}$.$) and trichloroacetonitrile (3.0 \mathrm{~mL}, 30.2 \mathrm{mmol}, 1.1 \mathrm{eq}$.$) was added$ and the reaction mixture was stirred for 14 h at room temperature. Solvents were removed under reduced pressure, and the crude product was purified by flash column chromatography ($\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc}$ in hexanes) to give trichloroacetimidate $\mathbf{3}$ as a yellow oil ($5.5 \mathrm{~g}, 46 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.73$ ($40 \% \mathrm{EtOAc}$ in hexanes). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to that reported previously for this compound. ${ }^{1}$

Compound S1

To a stirred suspension of 5-iodovanillin ($10.0 \mathrm{~g}, 36.0 \mathrm{mmol}$) in anhydrous dichloromethane $(100 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added boron tribromide ($5.5 \mathrm{~mL}, 57.6 \mathrm{mmol}, 1.6 \mathrm{eq}$.$) . The reaction mixture was allowed to warm to room$ temperature and stirred for 3 h , before being cooled to $0^{\circ} \mathrm{C}$ and quenched by the slow addition of methanol. Solvents were removed under reduced pressure and the crude product was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 40 \% \mathrm{EtOAc}\right.$ in hexanes) to give $\mathbf{S} 1$ as a white solid ($8.86 \mathrm{~g}, 93 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.40(50 \%$ EtOAc in hexanes). ${ }^{1} \mathrm{H}$ NMR (600 MHz , Methanol- d_{4}) $\delta 9.64(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=1.9$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, Methanol- d_{4}) $\delta 191.69,153.76,146.28,135.50,131.93,114.46,83.41$. ESI HRMS calcd for $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{IO}_{3}[\mathrm{M}-\mathrm{H}]-262.9211$, found 262.9219.

Compound S2

$\mathbf{S} 1(8.27 \mathrm{~g}, 31.3 \mathrm{mmol})$ was dissolved in anhydrous DMF $(70 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$ before the addition of $60 \% \mathrm{NaH}$ dispersion in mineral oil ($2.88 \mathrm{~g}, 72.0 \mathrm{mmol}, 2.3 \mathrm{eq}$.). [CAUTION: potentially bazardous combination of reagents, ${ }^{2}$ this reaction should not be run without the use of proper precautions such as careful cooling and quenching, and the use of a blast shield.] The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 minutes before the slow dropwise addition of benzyl bromide ($3.7 \mathrm{~mL}, 31.3 \mathrm{mmol}, 1.0 \mathrm{eq}$.), then stirred for a further 1 h at $0^{\circ} \mathrm{C}$. Chloromethyl methyl ether ($3.6 \mathrm{~mL}, 47.0 \mathrm{mmol}, 1.5 \mathrm{eq}$.) was added and the reaction was allowed to warm to room temperature and stirred for 2 h . Water was added to quench the reaction and the mixture was extracted with EtOAc ($3 \times$). The organic layers were combined and sequentially washed with water and brine, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated
under reduced pressure. The crude material was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 10 \% \mathrm{EtOAc}\right.$ in hexanes) to give $\mathbf{S} 2$ as a pale yellow oil ($10.86 \mathrm{~g}, 88 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.52\left(20 \% \mathrm{EtOAc}\right.$ in hexanes). ${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform-d) $\delta 9.81(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.38(\mathrm{~m}, 4 \mathrm{H})$, $7.36-7.33(\mathrm{~m}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 2 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 189.67, 151.67, 151.54, 135.64, 135.41, 133.91, 128.90, 128.63, 127.85, 112.72, 99.08, 92.52, 71.41, 58.71. ESI HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{IO}_{4}[\mathrm{M}-\mathrm{H}]-396.9942$, found 396.9951 .

Styrene 8

To a stirred suspension of aldehyde $\mathbf{S} 2(10.86 \mathrm{~g}, 27.3 \mathrm{mmol})$ and methyltriphenylphosphonium bromide (14.6 g, $40.9 \mathrm{mmol}, 1.5 \mathrm{eq}$.) in anhydrous THF $(100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $60 \% \mathrm{NaH}$ dispersion in mineral oil (1.64 $\mathrm{g}, 40.9 \mathrm{mmol}, 1.5 \mathrm{eq}$.$) . The reaction mixture was allowed to warm to room temperature and stirred for 14 \mathrm{~h}$. The mixture was partitioned between EtOAc and sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted twice with EtOAc. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude material was purified by flash column chromatography ($\mathrm{SiO}_{2}, 5 \% \mathrm{EtOAc}$ in hexanes) to give styrene 8 as a colorless oil ($9.29 \mathrm{~g}, 86 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.50\left(10 \%\right.$ EtOAc in hexanes). ${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) $\delta 7.45$ $(\mathrm{d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.33(\mathrm{~m}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{dd}, J=17.5,10.9$ $\mathrm{Hz}, 1 \mathrm{H}), 5.62(\mathrm{~d}, J=17.5,1 \mathrm{H}), 5.22(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 2 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.27,146.15,136.39,135.78,135.08,129.60,128.77,128.34,127.71,114.54,112.28,99.01$, 93.01, 71.29, 58.55. ESI HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{IO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$397.0295, found 397.0293.

Dipeptide 12

To a solution of 3-iodo-L-tyrosine ($6 \mathrm{~g}, 19.5 \mathrm{mmol}$) in $\mathrm{MeOH}(75 \mathrm{~mL})$ was slowly added $\mathrm{SOCl}_{2}(3.0 \mathrm{~mL}, 41.0$ mmol, 2.1 eq .) at $0^{\circ} \mathrm{C}$. The solution was refluxed for 2 h , and then the solvent was removed under reduced pressure. The crude material was dissolved in anhydrous DMF (100 mL) and treated sequentially with triethylamine ($13.6 \mathrm{~mL}, 97.5 \mathrm{mmol}, 5.0 \mathrm{eq}$.$) , 1-Hydroxybenzotriazole hydrate (\mathrm{HOBt}$) ($3.0 \mathrm{~g}, 19.5 \mathrm{mmol}, 1.0$ eq.), and Boc-L-Ala-OH ($4.06 \mathrm{~g}, 21.5 \mathrm{mmol}, 1.1 \mathrm{eq}$.$) . The mixture was cooled to 0{ }^{\circ} \mathrm{C}$ and 1-Ethyl-3-(3dimethylaminopropyl)carbodiimide Hydrochloride (EDC) ($5.60 \mathrm{~g}, 29.2 \mathrm{mmol}, 1.5 \mathrm{eq}$.) was added in one portion. The reaction was allowed to warm to room temperature and stirred for 14 h . The mixture was partitioned between EtOAc and water, and extracted twice with EtOAc. The organic layers were combined and washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to a white foam under reduced pressure. The crude material was dissolved in acetone $(100 \mathrm{~mL})$ and treated sequentially with $\mathrm{K}_{2} \mathrm{CO}_{3}(13.5 \mathrm{~g}, 97.5 \mathrm{mmol}$, 5.0 eq.) and benzyl bromide ($2.5 \mathrm{~mL}, 21.4 \mathrm{mmol}, 1.1 \mathrm{eq}$.$) , then refluxed for 14 \mathrm{~h}$. The solvent was removed under reduced pressure and the residue was partitioned between EtOAc and water, and extracted twice with EtOAc. The organic layers were combined and washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, $40 \% \mathrm{EtOAc}$ in hexanes) to give 12 as a white solid ($9.36 \mathrm{~g}, 82 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.26\left(40 \% \mathrm{EtOAc}\right.$ in hexanes). ${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) $\delta 7.53(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.32(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{dd}, J=8.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H})$, $4.91(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.77(\mathrm{dt}, J=7.7,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.08(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{dd}, J=14.0,5.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.9(\mathrm{dd}, J=14.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.33(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 172.36$,
$171.64,156.52,155.50,140.40,136.56,130.41,130.33,128.69,128.04,127.13,112.66,86.84,80.39,71.01,53.39$, 52.56, 50.38, 36.62, 28.43, 18.28. ESI HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{IN}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]+583.1300$, found 583.1299.

Dipeptide 13

Bis(pinacolato)diboron ($914 \mathrm{mg}, 3.6 \mathrm{mmol}, 1.5 \mathrm{eq}$), $12(1.4 \mathrm{~g}, 2.4 \mathrm{mmol}), \mathrm{KOAc}(706 \mathrm{mg}, 7.2 \mathrm{mmol}, 3.0 \mathrm{eq})$ and PdCl_{2} (dppf) ($196 \mathrm{mg}, 0.24 \mathrm{mmol}, 0.1 \mathrm{eq}$) were suspended in anhydrous DMSO (6.2 mL , degassed by sparging with Ar), and heated to $90^{\circ} \mathrm{C}$ for 14 h under Ar. The mixture was cooled to room temperature and partitioned between EtOAc and water, and extracted twice with EtOAc. The organic layers were combined and washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 45 \% \mathrm{EtOAc}\right.$ in hexanes) to give compound 13 as a white foam ($1.3 \mathrm{~g}, 93 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.29\left(40 \%\right.$ EtOAc in hexanes). ${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) $\delta 7.60$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.27(\mathrm{t}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=$ 8.4 Hz, 1H), $6.74-6.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.58-5.51(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.09(\mathrm{ABq}, J=12.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.79(\mathrm{q}, J=6.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.27-4.21(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{dd}, J=13.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=13.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.46-$ $1.29(\mathrm{~m}, 24 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.35,171.60,162.52,155.89,138.46,137.60,133.34,128.23$, 127.47, 127.40, 126.70, 115.03, 112.03, 83.82, 75.11, 69.84, 53.41, 52.38, 50.03, 36.38, 28.35, 25.27, 24.89. ESI HRMS calcd for $\mathrm{C}_{31} \mathrm{H}_{43} \mathrm{BN}_{2} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]+583.3191$, found 583.3183.

Compound S3a

To a stirred suspension of S-Trityl-L-cysteine ($500 \mathrm{mg}, 1.38 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(1.73 \mathrm{mg}, 2.06 \mathrm{mmol}, 1.5 \mathrm{eq}$.) in a $1: 1$ mixture of acetone and water (6 mL) was added $\mathrm{Boc}_{2} \mathrm{O}\left(330 \mathrm{mg}, 1.51 \mathrm{mmol}, 1.1 \mathrm{eq}\right.$.) at $0{ }^{\circ} \mathrm{C}$. The reaction was allowed to warm to room temperature and stirred for 14 h . The mixture was treated with 1 N HCl until pH 4 , and extracted with EtOAc $(3 \times)$. The organic layers were combined and washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to a white foam. The crude material was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and treated sequentially with DMAP ($\left.17 \mathrm{mg}, 0.14 \mathrm{mmol}, 0.1 \mathrm{eq}.\right)$, benzyl alcohol ($0.16 \mathrm{~mL}, 1.52 \mathrm{mmol}, 1.1 \mathrm{eq}$.$) , and DCC (313 \mathrm{mg}, 1.52 \mathrm{mmol}, 1.1 \mathrm{eq}$.$) , and stirred for 14 \mathrm{~h}$ at room temperature. The reaction mixture was filtered and solvents were removed under reduced pressure. The crude product was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 15 \% \mathrm{EtOAc}\right.$ in hexanes) to give $\mathbf{S 3 a}$ as a white solid (685 mg , 90% yield). $\mathrm{R}_{\mathrm{f}}=0.61$ (20% EtOAc in hexanes). ${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) $\delta 7.37$ ($\mathrm{d}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}$), $7.35-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.26(\mathrm{t}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H}), 7.20(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 5.17(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=$ $11.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-5.05(\mathrm{~m}, 1 \mathrm{H}), 4.37-4.31(\mathrm{~m}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=12.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=12.2,4.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 170.83,155.13,144.40,135.37,129.61,128.65,128.47$, $128.37,128.12,126.97,80.15,67.40,66.90,52.72,34.37,28.45$. ESI HRMS calcd for $\mathrm{C}_{34} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$ 576.2179, found 576.2185.

Compound S4a

To a mixture of S3a ($554 \mathrm{mg}, 1.0 \mathrm{mmol}$) and $\mathrm{H}_{2} \mathrm{O}\left(54 \mu \mathrm{~L}, 3.0 \mathrm{mmol}, 3.0 \mathrm{eq}\right.$.) in a $1: 1$ mixture of $\mathrm{CH}_{3} \mathrm{CN}$ and THF (10 mL) was added t - $\mathrm{BuOCl}^{3}\left(326 \mathrm{mg}, 3.0 \mathrm{mmol}, 3.0 \mathrm{eq}\right.$.) at $0^{\circ} \mathrm{C}$. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 15 minutes before solvents were removed under reduced pressure. The crude material was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) and to it was added $\mathrm{NEt}_{3}(0.7 \mathrm{~mL} .5 .0 \mathrm{mmol}, 5.0 \mathrm{eq}$.$) and isobutyl alcohol (0.46 \mathrm{~mL}, 5.0 \mathrm{mmol}, 5.0 \mathrm{eq}$.) at $0^{\circ} \mathrm{C}$. The reaction was allowed to warm to room temperature and stirred for 3 h before solvents were removed under reduced pressure. The crude product was purified by flash column chromatography ($\mathrm{SiO}_{2}, 10 \%$ to 20% EtOAc in hexanes) to give S4a as a colorless oil ($253 \mathrm{mg}, 61 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.44$ ($20 \% \mathrm{EtOAc}$ in hexanes). ${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform-d) $\delta 7.38-7.34(\mathrm{~m}, 5 \mathrm{H}), 5.58(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.19$ $(\mathrm{d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{dt}, J=7.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.92(\mathrm{~m}, 2 \mathrm{H}), 3.80-3.70(\mathrm{~m}, 2 \mathrm{H}), 2.00(\mathrm{~m}, 1 \mathrm{H}), 1.43$ $(\mathrm{s}, 9 \mathrm{H}), 0.96(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.90,155.11,134.88,128.79,128.69,80.89$, $76.44,68.38,51.00,50.23,28.37,28.36,18.76$. ESI HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 438.1557$, found 438.1565.

Compound 16a

A mixture of S4a ($250 \mathrm{mg}, 0.60 \mathrm{mmol}$) and $10 \% \mathrm{Pd} / \mathrm{C}(128 \mathrm{mg}, 0.12 \mathrm{mmol}, 0.2 \mathrm{eq}$.) in $\mathrm{MeOH}(9 \mathrm{~mL})$ was stirred at room temperature for 6 h under a hydrogen atmosphere. The mixture was filtered through celite and concentrated under reduced pressure to give 16a as a white solid which was used without further purification (196 mg , quantitative yield). ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}\right.$, Methanol- $\left.d_{4}\right) \delta 4.57(\mathrm{dd}, J=8.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=6.5$ $\mathrm{Hz}, 2 \mathrm{H}), 3.77(\mathrm{dd}, J=14.9,3.5,1 \mathrm{H}), 3.66(\mathrm{dd}, J=14.9,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 0.99(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, MeOD) $\delta 172.47,157.42,80.99,77.65,51.46,51.04,29.51,28.70,18.97$. ESI HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{NO}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$348.1087, found 348.1097.

Compound S5

To a solution of β-Ala-OMe. $\mathrm{HCl}(500 \mathrm{mg}, 3.6 \mathrm{mmol})$ and $\mathrm{NEt}_{3}(1.0 \mathrm{~mL}, 7.2 \mathrm{mmol}, 2.0 \mathrm{eq}$.$) in DMF (20 \mathrm{~mL}$) was added palmitoyl chloride ($1.1 \mathrm{~mL}, 3.6 \mathrm{mmol} .1 .0$ eq.) dropwise at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature and stirred for 14 h . The mixture was partitioned between EtOAc and water, and extracted two more times with EtOAc . The organic layers were combined and washed sequentially with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude product was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 33 \%\right.$ to $50 \% \mathrm{EtOAc}$ in hexanes) to give $\mathbf{S 5}$ as a white solid ($1.0 \mathrm{~g}, 81 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.31$ (50% EtOAc in hexanes). ${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) $\delta 6.01(\mathrm{~s}, 1 \mathrm{H}), 3.70$ $(\mathrm{s}, 3 \mathrm{H}), 3.52(\mathrm{td}, J=6.1 \mathrm{~Hz}, 6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.59-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.35-$ $1.20(\mathrm{~m}, 24 \mathrm{H}), 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.35,173.29,51.89,36.91,34.84$, $33.99,32.04,29.82,29.81,29.80,29.77,29.73,29.62,29.48,29.47,29.39,25.83,22.81,14.24$. ESI HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{39} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 342.3003$, found 342.3008.

Compound 17

S5 ($342 \mathrm{mg}, 1 \mathrm{mmol}$) was dissolved in THF (2 mL) and treated with $1 \mathrm{NLiOH}(2 \mathrm{~mL}, 2 \mathrm{mmol}, 2$ eq.) and stirred for 14 h at room temperature. THF was removed under reduced pressure. The residue was acidified with 1 N HCl and extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layers were combined and washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to give compound 17 as a white solid which was used without further purification. (327 mg , quantitative yield). ${ }^{1} \mathrm{H}$ NMR (600 MHz , Methanol- d_{4}) $\delta 3.41(\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}$), $2.49(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.16(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.59$ (quint, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.34-1.27(\mathrm{~m}$, 24 H), $0.90(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , MeOD) $\delta 176.40,37.05,36.47,33.08,30.79,30.76,30.73$, 30.61, $30.48,30.45,30.26,27.01,23.74,14.44$. ESI HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{37} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 328.2846$, found 328.2852.

Compound 2b

Compound $\mathbf{2 b}$ was prepared in the same manner as compound $\mathbf{2 a}$ from compounds $\mathbf{1 5}$ and $\mathbf{1 6 b} . \mathrm{R}_{\mathrm{f}}=0.42$ (67% EtOAc in hexanes). ${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) multiple isomers, see spectrum. ${ }^{13} \mathrm{C}$ NMR (151 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) multiple isomers, see spectrum. ESI HRMS calcd for $\mathrm{C}_{60} \mathrm{H}_{74} \mathrm{~N}_{4} \mathrm{O}_{20} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+1203.4690$, found 1203.4667.

Compound 18b

Compound $\mathbf{1 8 b}$ was prepared in the same manner as compound $\mathbf{1 8 a}$ from compounds $\mathbf{1 7}$ and $\mathbf{2 b}$. $\mathrm{R}_{\mathrm{f}}=0.16$ $\left(80 \%\right.$ EtOAc in hexanes). ${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) multiple isomers, see spectrum. ${ }^{13} \mathrm{C}$ NMR (151 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) multiple isomers, see spectrum. ESI HRMS calcd for $\mathrm{C}_{74} \mathrm{H}_{101} \mathrm{~N}_{5} \mathrm{O}_{20} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+1412.6833$, found 1412.6843.

Compound 19b

Compound 19b was prepared in the same manner as compound 19a from compound $\mathbf{1 8 b} .{ }^{1} \mathrm{H}$ NMR (600 MHz , Methanol- d_{4}) multiple isomers, see spectrum.${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{MeOD}$) multiple isomers, see spectrum. ESI HRMS calcd for $\mathrm{C}_{54} \mathrm{H}_{83} \mathrm{~N}_{5} \mathrm{O}_{17} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+1106.5577$, found 1106.5576.

Compound 20b

Compound 20b was prepared in the same manner as compound 20a from compound 19b. ${ }^{1} \mathrm{H}$ NMR (600 MHz , Methanol- d_{4}) multiple isomers, see spectrum. ${ }^{13} \mathrm{C}$ NMR (151 MHz , MeOD) multiple isomers, see spectrum. ESI HRMS calcd for $\mathrm{C}_{54} \mathrm{H}_{81} \mathrm{~F}_{2} \mathrm{~N}_{5} \mathrm{O}_{21} \mathrm{~S}_{3}[\mathrm{M}+\mathrm{H}]+1270.4627$, found 1270.4637.

Compound S6b

Compound S6b was prepared in the same manner as compound S6a from compound 20b. ${ }^{1} \mathrm{H}$ NMR (600 MHz , Methanol $-d_{4}$) multiple isomers, see spectrum. ${ }^{13} \mathrm{C}$ NMR (151 MHz , MeOD) multiple isomers, see spectrum. ESI HRMS calcd for $\mathrm{C}_{49} \mathrm{H}_{71} \mathrm{~F}_{2} \mathrm{~N}_{5} \mathrm{O}_{21} \mathrm{~S}_{3}[\mathrm{M}+\mathrm{H}]+1200.3844$, found 1200.3844 .

Arylomycin derivative 1b

Derivative $\mathbf{1 b}$ was prepared in the same manner as derivative $\mathbf{1 a}$ from compound $\mathbf{S 6 b} .{ }^{1} \mathrm{H}$ NMR (600 MHz , Methanol- d_{4}) $\delta 7.56(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{dd}, J=8.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 5.45(\mathrm{dd}, J=9.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.79-$ $4.70(\mathrm{~m}, 2 \mathrm{H}), 4.34(\mathrm{dd}, J=3.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=9.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{dd}, J=19.3,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.29$ $-3.11(\mathrm{~m}, 6 \mathrm{H}), 3.04(\mathrm{~s}, 3 \mathrm{H}), 2.45-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.17(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.22(\mathrm{~m}$, $26 \mathrm{H}), 0.90(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.62(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{MeOD}\right) \delta 176.45,173.61,173.07$, $171.47,171.06,163.29,149.57,147.87,146.71,136.41,134.38,133.96,132.43,131.90,130.35,123.51,120.92$, $105.38,74.05,72.02,71.68,71.16,64.14,54.25,53.01,50.47,49.57,47.91,37.12,36.81,36.70,35.18,33.08$, $30.80,30.77,30.67,30.55,30.48,30.40,26.99,23.74,19.23,17.48,14.44$. ESI HRMS calcd for $\mathrm{C}_{49} \mathrm{H}_{73} \mathrm{~N}_{5} \mathrm{O}_{23} \mathrm{~S}_{3}$ $[\mathrm{M}-2 \mathrm{H}]^{2-} 596.6856$, found 596.6848.

Compound 21

Compound 21 was synthesized as described in a previous literature procedure. ${ }^{4}$ The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to that reported previously for this compound.

Compound S7

A solution of glycosylated macrocycle $15(65 \mathrm{mg}, 0.073 \mathrm{mmol})$ in DMF $(2 \mathrm{~mL})$ was treated sequentially with 21 ($71 \mathrm{mg}, 0.22 \mathrm{mmol} \mathrm{mmol}, 3.0$ eq.), $\mathrm{NaHCO}_{3}(61 \mathrm{mg}, 0.73 \mathrm{mmol}, 10.0 \mathrm{eq}$.), and DEPBT ($65 \mathrm{mg}, 0.22 \mathrm{mmol}$, 3.0 eq.), and stirred at room temperature for 16 h . The reaction was partitioned between EtOAc and saturated aqueous NaHCO_{3} solution, and extracted twice with EtOAc. The organic layers were combined and washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude material was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 3 \% \mathrm{MeOH}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give compound $\mathbf{S} 7$ as a white solid (80 mg , 76% yield). $\mathrm{R}_{\mathrm{f}}=0.36\left(5 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \cdot{ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform-d) multiple isomers, see spectrum. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) multiple isomers, see spectrum. ESI HRMS calcd for $\mathrm{C}_{80} \mathrm{H}_{104} \mathrm{~N}_{6} \mathrm{O}_{19}[\mathrm{M}+\mathrm{H}]^{+}$ 1453.7429, found 1453.7439 .

Compound S8

Compound $\mathbf{S 7}(63 \mathrm{mg}, 0.043 \mathrm{mmol}$) was dissolved in anhydrous $\mathrm{MeOH}(2.5 \mathrm{~mL})$, and to it was added 30% NaOMe in $\mathrm{MeOH}\left(24 \mu \mathrm{~L}, 0.086 \mathrm{mmol}, 3.0\right.$ eq.) at $0^{\circ} \mathrm{C}$ and stirred for 2 h at the same temperature. Amberlyst15 ion exchange resin was added to the reaction and the mixture was stirred for a further 30 minutes. The resin was filtered off and solvents were removed under reduced pressure. The residue and $10 \% \mathrm{Pd} / \mathrm{C}(46 \mathrm{mg}, 0.043$ mmol, 1.0 eq.) were suspended in $\mathrm{MeOH}(2.5 \mathrm{~mL})$ and stirred for 3 h at room temperature under a hydrogen atmosphere. The Pd / C was filtered off through celite, and solvents were removed under reduced pressure to yield $\mathbf{S 8}\left(33 \mathrm{mg}, 72 \%\right.$ yield) as a white solid which was used without further purification. ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, Methanol- d_{4}) multiple isomers, see spectrum. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{MeOD}$) multiple isomers, see spectrum. ESI HRMS calcd for $\mathrm{C}_{53} \mathrm{H}_{80} \mathrm{~N}_{6} \mathrm{O}_{16}[\mathrm{M}+\mathrm{H}]^{+}$1057.5703, found 1057.5691.

Compound 22

$\mathbf{S 8}(12 \mathrm{mg}, 0.011 \mathrm{mmol})$ and $\mathrm{NEt}_{3}\left(16 \mu \mathrm{~L}, 0.11 \mathrm{mmol}, 10\right.$ eq.) were dissolved in a $1: 1$ mixture of DMF and $\mathrm{H}_{2} \mathrm{O}$ $(1.0 \mathrm{~mL})$ and stirred for 24 h at room temperature under a $\mathrm{SO}_{2} \mathrm{~F}_{2}$ atmosphere. The reaction mixture was partitioned between EtOAc and 0.5 N HCl , and the aqueous layer was extracted twice with EtOAc. The organic layers were combined and washed sequentially with 5% aqueous LiCl solution and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to give 22 as a white solid ($10 \mathrm{mg}, 72 \%$ yield) which was used without further purification. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}\right.$, Methanol- $\left.d_{4}\right)$ multiple isomers, see spectrum. ${ }^{13} \mathrm{C}$ NMR $(151 \mathrm{MHz}$, MeOD) multiple isomers, see spectrum. ESI HRMS calcd for $\mathrm{C}_{53} \mathrm{H}_{78} \mathrm{~F}_{2} \mathrm{~N}_{6} \mathrm{O}_{20} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]+1221.4753$, found 1221.4748.

Arylomycin derivative 23

Compound $22(5 \mathrm{mg}, 4.1 \mu \mathrm{~mol})$, dried cesium carbonate ($6 \mathrm{mg}, 0.018 \mathrm{mmol}, 4.5$ eq.), and activated $3 \AA$ molecular sieves were suspended in anhydrous ethylene glycol $(0.1 \mathrm{~mL})$ in a flame-dried flask and heated to 50 ${ }^{\circ} \mathrm{C}$ for 20 minutes under Ar. The reaction was cooled to room temperature and water $(0.1 \mathrm{~mL})$ was added to it. The mixture was stirred for a further 2 h at room temperature, then purified by reverse phase preparatory HPLC $\left(\mathrm{NH}_{4} \mathrm{OAc}\right.$ buffered conditions) to yield derivative 23 as a white solid ($1.1 \mathrm{mg}, 22 \%$ yield) after lyophilization. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}\right.$, Methanol $\left.-d_{4}\right) \delta 7.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{dd}, J=7.6,5.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.76(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.37-4.30(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.10$ $(\mathrm{m}, 1 \mathrm{H}), 4.03(\mathrm{dd}, J=11.3,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.69-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.24-3.14(\mathrm{~m}, 3 \mathrm{H}), 3.10(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{~d}, J=21.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.48-2.41(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.68-1.55(\mathrm{~m}$, $2 \mathrm{H}), 1.47-1.25(\mathrm{~m}, 29 \mathrm{H}), 0.90(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.61(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{MeOD}\right) \delta$ $177.03,174.90,171.81,171.54,163.30,163.07,162.84,149.51,147.83,146.78,136.43,135.29,134.53,132.65$, $132.37,131.55,130.51,123.06,120.54,105.38,74.08,72.01,71.65,71.15,64.31,60.71,56.25,50.84,50.37$, $49.85,42.53,35.83,34.59,34.22,33.67,33.08,30.79,30.76,30.69,30.61,30.48,26.09,23.74,19.21,17.94,17.48$, 14.44. ESI HRMS calcd for $\mathrm{C}_{52} \mathrm{H}_{78} \mathrm{~N}_{6} \mathrm{O}_{22} \mathrm{~S}_{2}[\mathrm{M}-2 \mathrm{H}]^{2-} 600.2227$, found 600.2228 .

Compound S9

18a (40 mg , 0.028 mmol) was dissolved in anhydrous $\mathrm{MeOH}(2.0 \mathrm{~mL}$), and to it was added $30 \% \mathrm{NaOMe}$ in $\mathrm{MeOH}(15 \mu \mathrm{~L}, 0.085 \mathrm{mmol}, 3.0 \mathrm{eq}$.$) at 0{ }^{\circ} \mathrm{C}$ and stirred for 2 h at the same temperature. Amberlyst- 15 ion exchange resin was added to the reaction and the mixture was stirred for a further 30 minutes. The resin was filtered off and solvents were removed under reduced pressure. A mixture of the residue and trimethyltin hydroxide ($31 \mathrm{mg}, 0.17 \mathrm{mmol}, 6 \mathrm{eq}$.) in anhydrous $\mathrm{DCE}\left(2 \mathrm{~mL}\right.$) was heated to $70^{\circ} \mathrm{C}$ for 16 h , then cooled to room temperature. The solvent was removed under reduced pressure, and the residue was partitioned between EtOAc and 0.5 N HCl , and the aqueous layer was extracted twice with EtOAc . The organic layers were combined and washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue and sodium iodide ($42 \mathrm{mg}, 0.28 \mathrm{mmol}, 10 \mathrm{eq}$.) were suspended in acetone (2 mL) and heated to $50^{\circ} \mathrm{C}$ for 4 h , then concentrated under reduced pressure. The crude material was taken up in MeOH and purified by reverse phase preparatory HPLC (0.1% TFA conditions) to yield compound $\mathbf{S} 9$ as a white solid ($13 \mathrm{mg}, 38 \%$ yield) after lyophilization. ${ }^{1} \mathrm{H}$ NMR (600 MHz , Methanol- d_{4}) multiple isomers, see spectrum. ${ }^{13} \mathrm{C}$ NMR (151 MHz , MeOD) multiple isomers, see spectrum. ESI HRMS calcd for $\mathrm{C}_{63} \mathrm{H}_{85} \mathrm{~N}_{5} \mathrm{O}_{17} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+1216.5734$, found 1216.5733.

Arylomycin derivative 24

S9 ($10 \mathrm{mg}, 8.22 \mu \mathrm{~mol}$) and $10 \% \mathrm{Pd} / \mathrm{C}(8.7 \mathrm{mg}, 8.22 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.$) were suspended in \mathrm{MeOH}(5.0 \mathrm{~mL})$ and stirred for 3 h at room temperature under a hydrogen atmosphere. The Pd / C was filtered off through celite, and solvents were removed under reduced pressure. The crude material was taken up in MeOH and purified by reverse phase preparatory HPLC $\left(\mathrm{NH}_{4} \mathrm{OAc}\right.$ buffered conditions) to yield derivative 24 as a white solid (5.8 $\mathrm{mg}, 68 \%$ yield) after lyophilization. ${ }^{1} \mathrm{H}$ NMR (600 MHz , Methanol- d_{4}) $\delta 7.07(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H})$, $6.82(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 5.42(\mathrm{~s}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~s}$, $1 \mathrm{H}), 3.80-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{q}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.45-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.21-3.04(\mathrm{~m}, 4 \mathrm{H}), 2.98(\mathrm{~d}, J=10.1$ $\mathrm{Hz}, 2 \mathrm{H}), 2.49(\mathrm{~s}, 2 \mathrm{H}), 2.23(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.66-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.23(\mathrm{~d}, J=21.8 \mathrm{~Hz}, 34 \mathrm{H}), 0.90(\mathrm{t}, J$ $=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.75-0.63(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, MeOD) $\delta 176.72,174.71,174.61,174.21,174.14$, $173.73,153.06,151.55,147.94,130.71,130.45,127.95,126.64,117.73,117.11,115.37,103.98,102.66,95.85$, $73.15,72.23,72.05,71.46,61.94,53.33,50.23,50.00,49.84,40.42,37.06,36.57,33.53,33.08,30.80,30.76,30.67$, $30.51,30.48,30.39,27.02,23.74,19.19,17.94,17.35,14.44$. For the same compound in DMSO- d_{6}, see spectrum. ESI HRMS calcd for $\mathrm{C}_{49} \mathrm{H}_{73} \mathrm{~N}_{5} \mathrm{O}_{17} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$1058.4614, found 1058.4613.

Macrocycle 25

Macrocycle 25 was synthesized as described in a previous literature procedure. ${ }^{5}$ The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to that reported previously for this compound.

Compound S10

To a solution of macrocycle $25(80 \mathrm{mg}, 0.15 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.2 \mathrm{~mL})$ was slowly added TFA $(0.8 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$. The solution was allowed to warm to room temperature and stirred for 1.5 h . The solvents were removed under reduced pressure to yield the free amine used in the next step without purification. A solution of 16a ($148 \mathrm{mg}, 0.45 \mathrm{mmol}, 3$ eq.) in THF (2 mL) was treated sequentially with $\mathrm{NaHCO}_{3}(96 \mathrm{mg}, 1.5 \mathrm{mmol}, 10 \mathrm{eq}$.) and DEPBT ($136 \mathrm{mg}, 0.45 \mathrm{mmol}, 3$ eq.) and stirred at room temperature for 30 minutes. The above amine (dissolved in 2 mL of THF) was added and the reaction stirred at room temperature for a further 16 h . The reaction was partitioned between EtOAc and saturated aqueous NaHCO_{3} solution, and extracted twice with EtOAc. The organic layers were combined and washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude material was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 67 \% \mathrm{EtOAc}\right.$ in
hexanes) to give $\mathbf{S 1 0}$ as a white solid ($50 \mathrm{mg}, 45 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.26$ ($67 \% \mathrm{EtOAc}$ in hexanes). ${ }^{1} \mathrm{H}$ NMR (600 MHz , Methanol- d_{4}) multiple conformational isomers, major isomer annotated in spectrum below, see spectrum below. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{MeOD}$) multiple conformational isomers, major isomer annotated in spectrum below, see spectrum below. ESI HRMS calcd for $\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 757.2725$, found 757.2724 .

Compound 26

To a solution of $\mathbf{S 1 0}(50 \mathrm{mg}, 0.068 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.7 \mathrm{~mL})$ was slowly added TFA $(0.3 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The solution was allowed to warm to room temperature and stirred for 1.5 h . The solvents were removed under reduced pressure to yield the free amine used in the next step without purification. A solution of 17 (67 mg , $0.204 \mathrm{mmol}, 3 \mathrm{eq}$.) in THF (3 mL) was treated sequentially with $\mathrm{NaHCO}_{3}(29 \mathrm{mg}, 0.34 \mathrm{mmol}, 5 \mathrm{eq}$.) and DEPBT ($61 \mathrm{mg}, 0.204 \mathrm{mmol}, 3 \mathrm{eq}$.) and stirred at room temperature for 30 minutes. The above free amine (dissolved in 2 mL of THF) was added and the reaction stirred at room temperature for a further 16 h . The reaction was partitioned between EtOAc and saturated aqueous NaHCO_{3} solution, and extracted twice with EtOAc. The organic layers were combined and washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude material was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 5 \% \mathrm{MeOH}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give 26 as a white solid (20 mg , 31% yield). $\mathrm{R}_{\mathrm{f}}=0.10\left(80 \% \mathrm{EtOAc}\right.$ in hexanes). ${ }^{1} \mathrm{H}$ NMR (600 MHz , Methanol- d_{4}) multiple conformational isomers, major isomer annotated in spectrum below, see spectrum below. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{MeOD}$) multiple conformational isomers, major isomer annotated in spectrum below, see spectrum below.. ESI HRMS calcd for $\mathrm{C}_{48} \mathrm{H}_{73} \mathrm{~N}_{5} \mathrm{O}_{12} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 944.5049$, found 944.5043.

Arylomycin derivative 27

A mixture of compound $26(15 \mathrm{mg}, 0.0159 \mathrm{mmol})$ and trimethyltin hydroxide ($14 \mathrm{mg}, 0.0794 \mathrm{mmol}, 5 \mathrm{eq}$.$) in$ anhydrous DCE (1.5 mL) was heated to $70^{\circ} \mathrm{C}$ for 16 h , then cooled to room temperature. The solvent was removed under reduced pressure, and the residue was partitioned between EtOAc and 0.5 N HCl , and the aqueous layer was extracted twice with EtOAc. The organic layers were combined and washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue and sodium iodide ($24 \mathrm{mg}, 0.159 \mathrm{mmol}$, 10 eq.) were suspended in acetone (1.5 mL) and heated to $50^{\circ} \mathrm{C}$ for 4 h , then concentrated under reduced pressure. The crude material was taken up in MeOH and purified by reverse phase preparatory HPLC (0.1% TFA conditions) to yield derivative 27 as a white solid ($4.6 \mathrm{mg}, 33 \%$ yield) after lyophilization. ${ }^{1} \mathrm{H}$ NMR (600 MHz , Methanol- d_{4}) multiple conformational isomers, see spectrum below. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{MeOD}$) multiple conformational isomers, see spectrum below. ESI HRMS calcd for $\mathrm{C}_{43} \mathrm{H}_{63} \mathrm{~N}_{5} \mathrm{O}_{12} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 874.4266$, found 874.4267.

Table S1: Additional optimization of the Suzuki-Miyaura reaction.

		$\begin{aligned} & \text { Suzuki- } \\ & \text { Miyaura } \end{aligned}$		
Entry	Pd Catalyst	Base	Solvent	Yield ${ }^{\text {b }}$
1	$\mathrm{PdCl}_{2} \mathrm{dppf}$ (0.2 eq.)	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMSO	21\%
2	$\mathrm{PdCl}_{2} \mathrm{dppf}(0.2 \mathrm{eq}$.	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMSO ${ }^{\text {c }}$	<10\%
3	$\operatorname{Pd}(0)\left[\left(\mathrm{P}(\not \subset \mathrm{Bu})_{3}\right]_{2}(0.2 \mathrm{eq}.)\right.$.	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMSO	<10\%
4	$\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.2 \mathrm{eq}$.)	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMSO	unreacted SM
5	PEPPSI-IPr (0.2 eq.)	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMSO	unreacted SM
6	$\mathrm{PdCl}_{2}(0.2$ eq. $)+$ SPhos	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMSO	<10\%
7	$\mathrm{PdCl}_{2} \mathrm{dppf}(0.2 \mathrm{eq}$.)	NaHCO_{3}	DMSO	<10\%
8	$\mathrm{PdCl}_{2} \mathrm{dppf}$ (0.2 eq.)	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	DMSO	<10\%
9	$\mathrm{PdCl}_{2} \mathrm{dppf}(0.2 \mathrm{eq}$.	$\mathrm{K}_{3} \mathrm{PO}_{4}$	DMSO	<10\%
10	$\mathrm{PdCl}_{2} \mathrm{dppf}(0.2 \mathrm{eq}$.)	$\mathrm{K}_{2} \mathrm{CO}_{3}$	30:1 Tol: $\mathrm{H}_{2} \mathrm{O}$	unreacted SM
11	$\mathrm{PdCl}_{2} \mathrm{dppf}$ (0.2 eq .)	$\mathrm{K}_{2} \mathrm{CO}_{3}$	$\mathrm{CH}_{3} \mathrm{CN}$ c	19\%
12	$\mathrm{PdCl}_{2} \mathrm{dppf}(0.2 \mathrm{eq}$.	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMF	15\%
13	$\mathrm{PdCl}_{2} \mathrm{dppf}$ (0.4 eq.$\left.\right)$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMSO	29\%
14	$\mathrm{PdCl}_{2} \mathrm{dppf}(1.0 \mathrm{eq}$. .)	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMSO	27\%

${ }^{a}$ Reactions were treated with 10 equiv. of base and heated to $90^{\circ} \mathrm{C}$ for 18 h under argon. ${ }^{b}$ Isolated yield. ${ }^{\circ}$ These reactions were heated to $80^{\circ} \mathrm{C}$ for 18 h .

Fig. S1: Mass fragmentation analysis of actinocarbasin (positive mode).

Fig. S2: Mass fragmentation analysis of actinocarbasin (negative mode).

$\underline{\text { References }}$

1. Trenkle, J. D.; Jamison, T. F. Angem. Chem. Int. Ed. 2009, 48, 5366.
2. Yang, Q.; et al. Ory. Process Res. Dev. 2019, 23, 2210.
3. Mintz, M. J.; Walling, C. Org. Synth. 1969, 49, 9.
4. Dufour, J.; Neuville, L.; Zhu, J. Synlett 2008, 15, 2355.
5. Peters, D. S.; Romesberg, F. E.; Baran, P. S. J. Am. Chem. Soc. 2018, 140, 2072.

NMR spectra

Compound S1 ${ }^{1} \mathbf{H}$ NMR (Methanol- $d_{4}, 600 \mathrm{MHz}$)

Compound S1 ${ }^{13}$ C NMR (Methanol- d_{4}, 151 MHz)

Compound S2 ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

Compound S2 ${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right)$

Compound S2 HSQC NMR (CDCl_{3})

Compound $8{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

Compound $8{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right)$

| 70 | 165 | 160 | 155 | 150 | 145 | 140 | 135 | 130 | 125 | 120 | 115 | 110 | 105 | 100 | 95 | 90 | 85 | 80 | 75 | 70 | 65 | 60 | 55 | 50 | 45 | 4 |
| :--- |

Compound $9{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

Compound $9{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right)$

Compound $11{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

		$\stackrel{\otimes}{\square}$	
为筬;			

(

Compound $11{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right)$

Compound $\mathbf{6}^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

Compound $6{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right)$

Compound $12{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

Compound $12{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right)$

[^0]Compound $13{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

Compound $13{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right)$

00 190 180 160 140 , $110 \begin{gathered}100 \\ \text { f1 } 1 \text { (ppm) }\end{gathered}$

Compound $4{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

Compound $4{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right)$

Compound $14{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

Compound $14{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right)$

Compound $15{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right)$

Compound S3a ${ }^{1} \mathbf{H}$ NMR ($\mathrm{CDCl}_{3}, 600 \mathrm{MHz}$)

BocHN $\underbrace{\text { OBn }}_{\text {STrt }}$

Compound S3a ${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right)$

$\begin{aligned} & \stackrel{\circ}{0} \\ & \underset{\sim}{\mathrm{j}} \end{aligned}$	$\begin{aligned} & \dot{\circ} \\ & \stackrel{\oplus}{\circ} \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \text { M } \\ \stackrel{\sim}{u n} \end{gathered}$			$\stackrel{\sim}{\square}$	$\begin{aligned} & 9.8 \\ & 0.0 \\ & 0 \end{aligned}$	N	$\stackrel{\substack{\text { w } \\ \text { ¢ }}}{\text { a }}$

00	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10

Compound S4a ${ }^{1} \mathbf{H}$ NMR ($\mathrm{CDCl}_{3}, 600 \mathrm{MHz}$)

Compound S4a ${ }^{13} \mathbf{C}$ NMR ($\mathrm{CDCl}_{3}, 151 \mathrm{MHz}$)

Compound 16a ${ }^{1} \mathbf{H}$ NMR (Methanol $-d_{4}, 600 \mathrm{MHz}$)

Compound 16a ${ }^{13}$ C NMR (Methanol- $d_{4}, 151 \mathrm{MHz}$)

Compound S5 ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$
(

Compound S5 ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right)$

Non

[^1]Compound $17{ }^{1} \mathbf{H}$ NMR (Methanol- $d_{4}, 600 \mathrm{MHz}$)

Compound $17{ }^{13} \mathrm{C}$ NMR (Methanol- d_{4}, 151 MHz)

$\underbrace{\text { - }}_{\text {- }}$

Compound 2a ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

Compound 2a ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right)$

Compound 18a ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

Compound 18a ${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right)$

Compound 19a ${ }^{1} \mathbf{H}$ NMR (Methanol- $d_{4}, 600 \mathrm{MHz}$)

Compound 19a ${ }^{13} \mathbf{C}$ NMR (Methanol- $d_{4}, 151 \mathrm{MHz}$)

Compound 20a ${ }^{1} \mathbf{H}$ NMR (Methanol- $d_{4}, 600 \mathrm{MHz}$)

Compound 20a ${ }^{13} \mathrm{C}$ NMR (Methanol- $d_{4}, 151 \mathrm{MHz}$)

$\left.\begin{array}{llllllllllllllllllllllllllll}\hline 00 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 1 & 1 & 1 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}\right)$

Compound S6a ${ }^{1} \mathbf{H}$ NMR (Methanol $-d_{4}, 600 \mathrm{MHz}$)

Compound S6a ${ }^{13}$ C NMR (Methanol- $d_{4}, 151 \mathrm{MHz}$)

[^2]Compound 1a ${ }^{1} \mathbf{H}$ NMR (Methanol- $d_{4}, 600 \mathrm{MHz}$)

Compound 1a ${ }^{1} \mathbf{H}$ NMR (DMSO- $d_{6}, 600 \mathrm{MHz}$)

Compound 1a ${ }^{13} \mathrm{C}$ NMR (Methanol- $d_{4}, 151 \mathrm{MHz}$)

$\begin{array}{llllllllllllllllllllllllllllllllllll}130 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

Compound 1a COSY NMR (Methanol- d_{4})

Compound 1a HSQC NMR (Methanol- d_{4})

Compound 1a HMBC NMR (Methanol- d_{4})

Compound 2b ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

Compound 2b ${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right)$

[^3]Compound 18b ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

Compound 18b ${ }^{13} \mathbf{C}$ NMR ($\mathrm{CDCl}_{3}, 151 \mathrm{MHz}$)

Compound 19b ${ }^{1} \mathbf{H}$ NMR (Methanol- $d_{4}, 600 \mathrm{MHz}$)

Compound 19b ${ }^{13}$ C NMR (Methanol- $d_{4}, 151 \mathrm{MHz}$)

Compound 20b ${ }^{1} \mathbf{H}$ NMR (Methanol- $d_{4}, 600 \mathrm{MHz}$)

Compound 20b ${ }^{13}$ C NMR (Methanol- d_{4}, 151 MHz)

Compound S6b ${ }^{1} \mathbf{H}$ NMR (Methanol $-d_{4}, 600 \mathrm{MHz}$)

Compound S6b ${ }^{13}$ C NMR (Methanol- $d_{4}, 151 \mathrm{MHz}$)

Compound $1 \mathrm{~b}{ }^{1} \mathbf{H}$ NMR (Methanol- $d_{4}, 600 \mathrm{MHz}$)

Compound 1b ${ }^{1} \mathbf{H}$ NMR (DMSO- $d_{6}, 600 \mathrm{MHz}$)

Compound 1b ${ }^{13} \mathbf{C}$ NMR (Methanol- d_{4}, 151 MHz)

Compound 1b COSY NMR (Methanol- d_{4})

Compound 1b HSQC NMR (Methanol- d_{4})

Compound 1b HMBC NMR (Methanol- d_{4})

Compound S7 ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$

Compound S7 ${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right)$

Compound S8 ${ }^{1} \mathbf{H}$ NMR (Methanol- $d_{4}, 600 \mathrm{MHz}$)

. 0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	$\begin{gathered} 4.0 \\ \mathrm{f}_{1}(\mathrm{ppm}) \end{gathered}$	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0

Compound S8 ${ }^{13} \mathbf{C}$ NMR (Methanol- d_{4}, 151 MHz)

Compound $22{ }^{1} \mathbf{H}$ NMR (Methanol- $d_{4}, 600 \mathrm{MHz}$)

Compound $22{ }^{13} \mathrm{C}$ NMR (Methanol- $d_{4}, 151 \mathrm{MHz}$)

Compound $23{ }^{1} \mathbf{H}$ NMR (Methanol- $d_{4}, 600 \mathrm{MHz}$)

Compound $23{ }^{13} \mathrm{C}$ NMR (Methanol- $d_{4}, 151 \mathrm{MHz}$)

| 00 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 1 |
| :--- |

Compound 23 COSY NMR (Methanol- d_{4})

Compound 23 HSQC NMR (Methanol- d_{4})

Compound S9 ${ }^{1} \mathbf{H}$ NMR (Methanol- $d_{4}, 600 \mathrm{MHz}$)

Compound S9 ${ }^{13} \mathbf{C}$ NMR (Methanol- $d_{4}, 151 \mathrm{MHz}$)

Compound $24{ }^{1} \mathbf{H}$ NMR (Methanol- $d_{4}, 600 \mathrm{MHz}$)

Compound $24{ }^{1} \mathbf{H}$ NMR (DMSO- $d_{6}, 600 \mathrm{MHz}$)

Compound $24{ }^{13} \mathrm{C}$ NMR (Methanol- $d_{4}, 151 \mathrm{MHz}$)

00	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10

Compound 24 COSY NMR (Methanol- d_{4})

Compound 24 HSQC NMR (Methanol- d_{4})

Compound 24 HMBC NMR (Methanol- d_{4})

Compound 24 COSY NMR (DMSO- d_{6})

Compound 24 HSQC NMR (DMSO- d_{6})

Compound S10 ${ }^{1} \mathbf{H}$ NMR (Methanol- $d_{4}, 600 \mathrm{MHz}$)

Compound S10 ${ }^{13} \mathbf{C}$ NMR (Methanol- $d_{4}, 151 \mathrm{MHz}$)

Compound $26{ }^{1} \mathbf{H}$ NMR (Methanol- $d_{4}, 600 \mathrm{MHz}$)

Compound $26{ }^{13} \mathrm{C}$ NMR (Methanol- d_{4}, 151 MHz)

Compound $27{ }^{1} \mathbf{H}$ NMR (Methanol- $d_{4}, 600 \mathrm{MHz}$)

Compound $27{ }^{13} \mathbf{C}$ NMR (Methanol- $d_{4}, 151 \mathrm{MHz}$)

Compound 27 COSY NMR (Methanol- d_{4})

Compound 27 HSQC NMR (Methanol- d_{4})

Compound 27 HMBC NMR (Methanol- d_{4})

[^0]:

[^1]:

[^2]: $\begin{array}{lllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \underset{\substack{100 \\ f 1(\mathrm{ppm})}}{ }{ }^{100} & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$

[^3]:

