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A. Terahertz imaging system 

The amplitude and phase images were obtained using a standard THz time-domain spectroscopy (THz-TDS) 

imaging system [Fig. S1].  An ultrafast Ti:Sapphire laser (Spectra-physics, 800 nm, 100 MHz, 100fs) 

delivered 300 mW of optical power to an interdigitated photoconductive antenna (BATOP) for THz emission, 

and 10 mW to a wrapped dipole antenna (Menlo) for detection. The THz was focused on the object and the 

modulating mask under imaging using a pair of parabolic mirrors. The object was placed on a movable 3D 

micro-positioning stage and raster-scanned for imaging. An optical delay line was placed on the emitter side 

and the detected photocurrent was proportional to the electric field of the THz pulse. A Fourier transform of 

this electric field provided amplitude and phase spectra over a large bandwidth. 

 

 
Fig. S1 THz time-domain spectroscopy system used to obtain spectral amplitude and phase images. 

 

B. Fabrication of the object and the masks 

In our experiments, the binary metal object representing the fleur-de-lys was made using toner-assisted metal 

foil transfer, also known as hot stamping [Fig. S2a]. This technique allows to fabricate metallic features 

directly on a paper substrate using a metal foil composite deposited on a thin layer of thermoplastic. The 

design was first printed on paper with a conventional office laser printer. The metallic foil composite (Therm 

O Web Deco Foil) was then placed on top of the print and both passed through a laminator. Due to enhanced 

local heating, the toner and thermoplastic are bonded, leading to a direct imprint of the metal layer on top of 

the printed design.  

The phase masks were fabricated using fused deposition modeling (3D printing) of a polylactic acid 

(PLA) with refractive index of ~1.6. The phase elements +1  and −1 were obtained by varying the thickness 

from 1000 µm to 1800 µm, corresponding to 0 and 𝜋 phase variations at 0.32 THz [Fig. S2b]. The amplitude 

masks were fabricated using the hot stamping technique discussed above [Fig. S2c]. 
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Fig. S2 (a) Fleur-de-lys object obtained using the hot stamping technique. The bar size is 5 mm. (b) 

A set of eight pure phase masks for second order SODI fabricated from PLA using fused deposition 

modeling.  (c) A set of eight binary amplitude masks for second order SODI fabricated using toner-

assisted metal foil transfer.  

 

C. Determination of the size of the group of pixels in relation to the point spread function 

In the SODI algorithm, the local orthogonality condition is used for the basic pixel group that has a 

characteristic size comparable to that of the imaging system point spread function (PSF). The basic pixel 

group is then periodically patterned to cover the whole object.  

To determine the size of the basic pixel group for mask construction, we first need to measure the size of 

the imaging system PSF. For that, we performed a knife-edge measurement of the focused THz beam. We 

positioned a metal object (knife) in the focal plane and we moved it along the 𝑥 direction while recording the 

THz field amplitude as a function of frequency [Fig. S3a]. In the 𝑥 direction, we assume that the electric field 

amplitude can be represented with a Gaussian function with a standard deviation 𝜎: 

𝑆(𝑥) = 𝐴 exp [−
(𝑥 − 𝑥0)
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where 𝐴 is a normalization parameter and 𝑥0 accounts for the center position of the Gaussian. The part of the 

beam that is measured (that is not blocked by the knife) is then given by the cumulative distribution function 

of the Gaussian function1: 
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where 𝑥′ can be seen as the position of the knife in the focal plane. The function erf(𝜉) is the error function 

defined as: 
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Using Eq. (S2) for every frequency, we fit the measurements using the error function [Eq. (S2)] and 

retrieve the 𝜎 parameter of the corresponding Gaussian distribution. We show in Fig. S3b the obtained 𝜎 

parameter as a function of the wavelength (black dots). The red line is the theoretical estimate of the 

diffraction-limited Gaussian beam waist size2: 

𝜎(𝜆) =
√2

𝜋

𝐹𝑚

𝐷𝑚

𝜆 (S4) 



where in our case 𝐹𝑚 = 101.6 mm is the focal length of the parabolic mirror and 𝐷𝑚 = 50.8 mm is its 

diameter. The good fit between our experimental data and Eq. (S4) indicates that our system is limited by 

diffraction.  

In the experiments, the basic group of pixels was made of 7 hexagons with an inter-pixel distance of 2 

mm. To better visualize how the Gaussian PSF is related in size to the basic group of pixels, we show in Fig. 

S3c the amplitude of the Gaussian PSF [Eq. (S1)] for the different frequencies considered in the experiments, 

where 𝜎 was obtained from the measurements of Fig. S3b. The bold white circle and the dashed white circle 

correspond to circles of radius 2𝜎 and 3𝜎 respectively. Within these circles, 95% (2𝜎) and 99.7% (3𝜎) of 

the Gaussian beam amplitude is located. As we can see, for the frequency of 0.32 THz, the basic group of 

pixels is inscribed inside the circle of 3𝜎 radius.  

 
Fig. S3 (a) Knife-edge measurements. Electric field spectral amplitude as a function of the position of the 

knife in the focal plane. (b) Standard deviation 𝜎 as a function of the wavelength. The good fit between the 

measurements (black dots) and the fit (red line, 𝜎(𝜆) =
√2

𝜋

𝐹

𝐷
 𝜆) indicates that the beam is diffraction-limited 

according to Gaussian beam theory. (c) The basic pixel group used in our experiments and the Gaussian beam 

distribution for different frequencies. 

 

D. Reconstruction of the phase for binary amplitude masks 

In Section 4 of the main paper, we showed second order SODI reconstruction using binary amplitude masks. 

In particular, Fig. 3d showed the SODI reconstruction of the amplitude. In this section, we present the phase 

reconstruction using the same data. The original phase images for different frequencies are shown in the top 

row of Fig. S4, while the SODI reconstructions when considering the phase of ⟨𝐸2(𝑟)⟩ − ⟨𝐸(𝑟)⟩2 are 

presented in the middle row. In all cases, the SODI reconstruction can better resolve the object. To retrieve 

the original values of the phase while increasing the resolution, one can also compute the phase of  

√⟨𝐸2(𝑟)⟩ − ⟨𝐸(𝑟)⟩2, which is shown in the bottom row of Fig. S4.  



 
Fig. S4 Second order SODI phase reconstruction using binary amplitude masks at different 

frequencies. Top row: original phase images. Middle row: SODI reconstruction using ⟨𝐸2(𝑟)⟩ −

⟨𝐸(𝑟)⟩2. Bottom row: SODI reconstruction using √⟨𝐸2(𝑟)⟩ − ⟨𝐸(𝑟)⟩2. Scale bar size is 5 mm. 

 

E. Impact on the choice of the mesh and basis on the second-order SODI image reconstruction 

In this Section, we analyze the impact of certain choices on the second-order SODI image reconstruction. In 

particular, we are interested in answering the three following questions: 1) For a fixed size of group of pixels, 

how does the number of subpixels impact the reconstruction?, 2) Considering not using all the vectors of a 

Hadamard basis, how does the choice of the vectors affect the reconstruction?, 3) How the shape of the 

subpixel (triangle, hexagon or square) impacts the reconstruction? 

 

Impact of the number of subpixels 

To judge the quality of the reconstruction, we use a binary Siemens star (Fig. S5a). As a PSF, we use a 

Gaussian with a width 𝜎 = 1.5 mm (Fig. S5b). The initial image was obtained by convoluting the object with 

the PSF and is presented in Fig. S5c. Next, to apply the SODI algorithm, we use 2x2 (Fig. S5d), 4x4 (Fig. 

S5e) and 8x8 (Fig. S5f) square tiles and the Hadamard basis of order 4, 16 and 64 respectively. In these 

simulations, the size of the group of pixels is conserved while the individual subpixels are reduced in size to 

accommodate more pixels. We observe in Fig. S5d-f that in all three cases the image resolution is improved 

because the lines of the Siemens closer to the center are better distinguishable than in the original image of 

Fig. S5c. However, by increasing the number of subpixels, the quality of the reconstruction is improved as 

can be seen by the absence of reconstruction artifacts in Fig. S5f compared to Fig. S5d. 

 



 
Fig. S5 (a) Object corresponding to a binary amplitude Siemens star. (b) Gaussian PSF with a width of 1.5 

mm. (c) Original image obtained by convoluting the object to the PSF. (d) Second-order SODI 

reconstruction considering 4 pixels, (e) 16 pixels and (f) 64 pixels in the group of pixels. 

 

 

Impact on the choice of the vectors of a basis 

Next, considering using a basis with more vectors than the number of pixels, we are interested on evaluating 

the impact of the choice of a subset of vectors to reconstruct the image. For this simulation, as before, we use 

a Siemens star and PSF Gaussian with a width of 1.5 mm. The original image obtained by convolution of the 

Siemens star (Fig. S5a) with the PSF (Fig. S5b) is shown in Fig. S6a. Next, we use 3x3 square tiles and a 

Hadamard basis of order 16. Thus, there are fewer pixels (9) than the number of possible choices given by 

the Hadamard basis (16). However, this has no impact on the reconstruction because every vector of the 

Hadamard basis is orthogonal to all the others, meaning that the local orthogonality condition is always 

respected. This is confirmed by our simulations where we randomly select 9 vectors out of the 16 for the 

reconstruction (Fig. S6b-f). The resolution is always improved when compared to the original image and 

there is no effect on the particular choice on the quality of the reconstruction. 

 



 
Fig. S6. (a) Original image obtained by convoluting the Siemens start with a Gaussian of width 1.5 mm. (b) 

Second-order SODI reconstruction using 9 randomly selected vectors of the Hadamard basis of order 16. 

Selected vectors are {1,2,3,6,8,9,10,13,15}, (c) {3,6,7,8,10,12,14,15}, (d) {4,5,6,8,10,12,13,14,16}, (e) 

{1,4,6,9,10,11,12,13,16}, (f) {2,3,4,5,7,9,11,15,16}. 

 

Impact of the choice of the subpixel shape on the reconstruction  

Finally, as we mentioned in the main paper, the subpixels are not limited to square tiling, as triangular and 

hexagonal tiling can also be used to cover the two-dimensional plane. To evaluate the impact of the choice 

of the subpixel shape we perform second-order SODI reconstruction using 6 triangles (Fig. S7ad), 7 hexagons 

(Fig. S7be) and 9 squares (Fig. S7cf). For these numerical simulations, we used identity matrices which 

correspond to successive illumination of the subpixels. As PSFs, we used Gaussian with width of 1.1 mm in 

Fig. S7a-c and 1.3 mm in Fig. S7d-f. In general, the choice of the pixel shape does not impact the resolution. 

However, the artifacts in the reconstruction depends greatly on the choice of the tiling choice, as it can be 

clearly seen in Fig. S7a-c where the artifacts are more visible because the relative subpixel size compared to 

the PSF width is not adequate.  



 
Fig. S7. Second-order SODI reconstruction using a width of (a)-(c) 1.1 mm and (d)-(f) 1.3 mm and using 

(a),(d) 6 triangles, (b),(e) 7 hexagons and (c),(f) 9 squares.  

 

 

 

F. Super-resolution reconstruction of order 4 

For a reconstruction of order 𝑛 = 4, the 4th order orthogonality condition is defined as: 

⟨𝑀(𝑟1, 𝑡)𝑀(𝑟2, 𝑡)𝑀(𝑟3, 𝑡)𝑀(𝑟4, 𝑡)⟩𝑡 =
1

𝑁𝑡

∑𝑀(𝑟1, 𝑡)𝑀(𝑟2, 𝑡)𝑀(𝑟3, 𝑡)𝑀(𝑟4, 𝑡)

𝑁𝑡

𝑡=1

= {
𝐶 if 𝑟1 = 𝑟2 = 𝑟3 = 𝑟4
0 else

 

(S5) 

For the simulation result shown in Fig. 4i, we constructed a basis with 𝑁𝑟 = 16 pixels. First, we note that the 

following basis with two pixels respect the 4th order orthogonality condition: 

𝐴1 = [

−1 −1
1 −𝑖
1 −1
𝑖 −1

] (S6) 

as does the following one:  

𝐴2 = [

−𝑖 −𝑖
−𝑖 −1
−1 −𝑖
−1 1

] (S7) 

One can then verify that the Kronecker product of these two matrices leads to a new matrix that respects the 

4th order orthogonality condition as well: 



𝐴3 = 𝐴1 ⊗ 𝐴2 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑖 𝑖 𝑖 𝑖
𝑖 1 𝑖 1
1 𝑖 1 𝑖
1 −1 1 −1
−𝑖 −𝑖 −1 −1
−𝑖 −1 −1 𝑖
−1 −𝑖 𝑖 −1
−1 1 𝑖 −𝑖
−𝑖 −𝑖 𝑖 𝑖
−𝑖 −1 𝑖 1
−1 −𝑖 1 𝑖
−1 1 1 −1
−1 1 1 −1
1 −𝑖 𝑖 1
−𝑖 1 1 𝑖
−𝑖 𝑖 1 −1]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (S8) 

This new matrix defines 𝑁𝑡 =16 masks containing 𝑁𝑟 = 4 pixels in the basic pixel group. By continuing in 

a similar fashion, we can create a fourth matrix by computing the following Kronecker product: 

𝐴4 = 𝐴3 ⊗ 𝐴1 (S9) 

where 𝐴4 has dimensions of 𝑁𝑡 = 64  and 𝑁𝑟 = 8 pixels. Finally, the matrix: 

𝐴5 = 𝐴4 ⊗ 𝐴2 (S10) 

has dimensions of 𝑁𝑡 = 256 (number of locally orthogonal masks in a set) and 𝑁𝑟 = 16 (number of pixels 

in the basic pixel group). We verified numerically that the new constructed matrix respects the 4 th 

orthogonality conditions by computing all the 3876 possible distinct 4-vector products. As expected, all of 

them equal 0, except those when the 4 indices are the same. 

Following several numerical experimentations, it seems that the Kronecker product of two matrices that 

respect the orthogonality condition yields a third matrix that also respect the orthogonality as well. This 

mathematical hypothesis has yet to be rigorously demonstrated. 
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