Supporting Information

Nanostructured Surfaces of Opposite Charge from Self-Assembled Block Copolymers

Brandon A. Fultz[¥], Tanguy Terlier[‡], Beatriz Dunoyer de Segonzac[¥], Rafael Verduzco^{*}, and Justin G. Kennemur^{*}

[¥] Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL 32306-4390, United States.

[£] Department of Chemical and Biomolecular Engineering, Rice University, MS 362, 6100 Main Street, Houston, USA

[‡]SIMS laboratory, Shared Equipment Authority, Rice University, MS 126, 6100 Main Street, 77005 Houston Texas, United States.

Table of Contents:

1. Additional characterization data.

- Figure S1. Stacked ¹H NMR of CDPA, PtBMA, and PtBMA-*b*-P4VP.
- Figure S2. ¹³C NMR of CDPA (RAFT CTA).
- Figure S3. ATR-IR spectrum of CDPA.
- Figure S4. ¹³C NMR of PtBMA macro-CTA.
- Figure S5. ATR-IR spectrum of PtBMA macro-CTA.
- Figure S6. SEC trace of PtBMA macro-CTA.
- Figure S7. ¹H NMR of PtBMA-*b*-P4VP to determine segment molar ratios.
- Figure S8. ¹³C NMR of PtBMA-*b*-P4VP.
- Figure S9. ATR-IR spectrum of PtBMA-*b*-P4VP.
- Figure S10. SEC trace of PtBMA-*b*-P4VP.
- Figure S11. DSC thermogram of PtBMA-*b*-P4VP.
- Figure S12. DSC thermogram of PtBMA macro-CTA.
- Figure S13. TGA thermogram of PtBMA-*b*-P4VP.
- Figure S14. ToF-SIMS spectrum of P4VP homopolymer in negative ion mode.
- Figure S15. ToF-SIMS spectrum of PtBMA homopolymer in negative ion mode.
- Figure S16. ToF-SIMS spectrum of P4VP homopolymer in positive ion mode.
- Figure S17. ToF-SIMS spectrum of PtBMA homopolymer in positive ion mode.
- Figure S18. ToF-SIMS imaging of dewetted film VP-MA(12-4)

2. Glass apparatus used for HCl vapor treatments

p. S13

p. S2

homopolymer, and C) RAFT CTA (CDPA).

Figure S2. ¹³C NMR (CDCl₃, 25 °C, 125 MHz) of CDPA, RAFT CTA.

Figure S3. ATR-IR spectrum of CDPA, RAFT CTA, at 25 °C.

Figure S4. ¹³C NMR (CDCl₃, 25 °C, 125 MHz) of PtBMA macro-CTA.

Figure S5. ATR-IR spectrum of PtBMA macro-CTA at 25 °C.

Figure S6. SEC-RI trace (THF mobile phase, 25 °C) of PtBMA macro-CTA ($M_n = 51.0$ kg mol⁻¹, D = 1.04) determined by MALS using a dn/dc = 0.065 mL/g.

Figure S7. ¹H NMR (CDCl₃, 25 °C) showing the integration ratios for P4VP-*b*-PtBMA used for determining molar ratios of each diblock copolymer segment.

Figure S8. ¹³C NMR (CDCl₃, 25 °C, 125 MHz) of PtBMA-*b*-P4VP.

Figure S9. ATR-IR spectrum of PtBMA-*b*-P4VP at 25 °C.

Figure S10. SEC-RI overlay trace (THF mobile phase, 25 °C) of PtBMA (black) and PtBMA-*b*-P4VP (red).

Figure S11. DSC thermogram of PtBMA-*b*-P4VP (exo up). Samples were cycled from 40 °C to 165 °C at a rate of 10 °C min⁻¹ under N₂ and the data shown was taken upon the 2^{nd} heating.

Figure S12. DSC thermogram of PtBMA macro-CTA (exo up). Samples were cycled from 40 °C to 165 °C at a rate of 10 °C min⁻¹ under N₂ and the data shown was taken upon the 2^{nd} heating.

Figure S13. TGA thermogram of PtBMA-*b*-P4VP taken at a heating rate of 10 °C min⁻¹ under Ar. A two-step thermal decomposition is observed.

Figure S14. Normalized intensity of negative ion detection as a function of ion dose determined by ToF-SIMS in negative ion mode for P4VP homopolymer.

Figure S15. Normalized intensity of negative ion detection as a function of ion dose determined by ToF-SIMS in negative ion mode for PtBMA homopolymer

Figure S16. Normalized intensity of positive ion detection as a function of ion dose determined by ToF-SIMS in positive ion mode for P4VP homopolymer.

Figure S17. Normalized intensity of positive ion detection as a function of ion dose determined by ToF-SIMS in positive ion mode of PtBMA homopolymer.

Figure S18. ToF-SIMS imaging of dewetted film**VP-MA(12-4)**. The characteristic ion images, here, $C_7H_8N^+$ (red) for P4VP and $C_8H_{13}O_2^+$ (blue) for PtBMA described a relatively homogeneous composition in the region without dewetting when the Si⁺ ion image displays the substrate in the bottom of the pits.

<u>Description and images of custom-built glassware apparatus for treatment of thin films with HCl vapor.</u>

A glass vial insert serves as the HCl reservoir which is housed within a pressure vessel that can be sealed with a PTFE cap and Viton o-ring (left picture). Another glass insert rests at the top of the pressure vessel and serves as a stage for the substrates to rest on (right picture). This glass insert has a bore in the center to allow HCl vapor exposure from the reservoir below.

