Supporting Information

Pt Nanoparticles Supported on Mesoporous Graphitic Carbon Nitride as Catalysts for Hydrolytic Dehydrogenation of Ammonia Borane

Merve Aksoy^a, Önder Metin^{a,b,c}*

^aDepartment of Chemistry, College of Sciences, Koç University 34450, Istanbul, Turkey. ^bKoç University TÜPRAŞ Energy Center (KUTEM), 34450 Sarıyer, Istanbul, Turkey. ^cKoç University Surface Science and Technology Center (KUYTAM), 34450 Sarıyer, Istanbul, Turkey

e-mail: <u>ometin@ku.edu.tr</u>

Figure S1. TEM images of mpg-CN/Pt nanocomposites with different experimental Pt loadings (a) 5.94 wt%, (b) 3.82 wt%, (c) 2.08 wt% and (d) 1.16 wt% Pt.

Figure S2. XPS survey spectrum of mpg-CN/Pt nanocatalysts (3.82 wt% Pt loading).

Figure S3. Pt 4f_{7/2} XPS spectra of mpg-CN/Pt nanocatalysts reduced by Sodium Borohydride instead of Ammonia Borane.

Figure S4. Pt 4f_{7/2} XPS spectra of mpg-CN/Pt (IV) composite (3.82 wt% Pt loading) before AB dehydrogenation, after AB dehydrogenation, together with the same catalyst after 10th run reusability test.

Figure S5. Pt 4f XPS spectra of rGO/Pt (0) nanocatalysts reduced by AB.

Figure S6. High-resolution XPS spectra of N1s region of mpg-CN, mpg-CN/Pt (IV) composite and mpg-CN/Pt nanocatalysts (3.82 wt% Pt loading)

Figure S7: Plot of volume of H₂ generated from AB hydrolysis catalyzed by mpg-CN/Pt nanocatalysts (3.82 wt% Pt loading) versus time at reaction conditions: [AB] = 50-200 mM, T = 25 °C, [Pt] = 0.2 mM (a) and logarithmic plots of H₂ generation rate versus AB concentrations (b).

Pt loading experimentally	Pt loading by ICP-MS		
(w/w %)	(w/w %)		
10	5.94		
5	3.82		
2.5	2.08		
1.25	1.16		

Table S1. Pt loading weight percent (w/w %) of mpg-CN/Pt composites experimentally and
by ICP-MS.

Table S2. The corresponding binding energy values for each nanocomposite.

N groups	mpg-CN	mpg-CN/Pt (IV)	mpg-CN/Pt (0)
C=N-C	398.47	398.58	398.68
N(-C-) ₃	399.87	399.98	399.98
(-C-NH ₂)	400.97	401.08	401.08

Table S3. Catalytic activity of reported platinum based catalysts used for the hydrolysis of AB together with the percentage of initial catalytic activity maintained after the reusability test.

Entry	Catalyst	E _a (kJ/mol)	TOF (min ⁻¹)	Cycle number	Maintaining initial Catalytic Activity	Ref.
1	SiO ₂ @Pt _{0.1} Co _{0.9}	37.05	25.59	5	70	1
2	Pt ₁₂ Ni ₄₈ DENS		32			2
3	Pt(8%)/CCF-500	39.2	35.0			3
4	SNP-Pt ₆₅ Ti ₃₅	39.4	51.4	5	63	4
5	$NP-Pt_{70}Ru_{30}$	38.9	59.6	5	70	5
6	Pt-CeO ₂ /rGO NCs	64.7	93.8	10	92	6
7	Cu ₅₀ Pt ₅₀ NPs	36	102.5	3	75	7
8	hnp–Pt ₃₅ Cu ₆₅	40.5	108	5	68	8
9	Pt/C		111			9
10	PC3/SAG	30.2	123.1	2	100	10
11	PdPt @PVP NPs	51.7	125.0	5	61	11
12	NP–Pt ₄₀ Co ₆₀ /Co ₃ O ₄ composite	38.8	131	5	65	12
13	Pt@PC-POP	56.4	133.2 (at 35 °C)	8	96	13
14	Pt/CNT-G	35.34	135			14
15	Pt@CF-12	30.7	139.3	4	100	15
16	Pt@SiO ₂		158.6	5	100	16
17	Pt/CeO ₂		182			17
18	mpg-CN/Pt (3.82 %)	40.7	202.89	10	78	This study
19	$Pt/\gamma -Al_2O_3$	21	222			18
20	mpg-CN/Pt (5.94 %)		274.18			This study
21	Pt–Ru@PVP NPs	56.3	308.0	5	72	19
22	Pt20/CNT (by ALD)	48.3	416.5	4	40	20
23	Pt-Co@PG	32.79	461.17	5	81.2	21
24	3 wt%Pt-3 wt%Ru/CNT	36	547			22
25	Pt/CNTs-O-HT		567 (at 30 °C)			23
26	PtCo20/CNTs	42.5	675.1			24
	(by ALD)					
27	Cu ₆₈ Pt ₃₂ /KB	39	859	5	75	25
28	PtNi/NiO	43	1240.3			26
29	Pt@NiO/Ni-CNT	24.9	2665			27
DENS=dendrimer-encapsulated nanoparticles CCE=cotton derived carbon fiber SNP=Stratified						

DENS=dendrimer-encapsulated nanoparticles, CCF=cotton derived carbon fiber, SNP=Stratified nanoporous, NC=nanocomposite, hnp= hierarchical nanoporous, PC/SAG=Platinum-Cobalt/ Mesoporous Silica Aerogel, PVP= Poly(N-vinyl-2-pyrrolidone), POP=Porous Organic Polymer, CNT-G= carbon nanotube-graphene, CF-12=Carboxylic acid Functionalized Cage-Type Mesoporous Silica FDU-12, CNTs-O-HT= carbon nanotubes acid oxidation and high temperature treated, ALD= Atomic Layer Deposition, PG= Nanoporous graphene, KB= Ketjen Black

Entry	Catalyst	Ea	TOF	Cycle	Maintained	
		(kJ/mol)	(min ⁻¹)	number	Activity	Ref.
1	Ni/g-C ₃ N ₄	36	18.7	4	75	28
2	Pd(0)/g-C ₃ N ₄ -CS	35.3	27.7 (at 30 °C)	8	72.9	29
3	Co/ g-C ₃ N ₄		55.6			30
4	mpg-C ₃ N ₄ /Pd	53.6	66.3	5	75	31
5	FeCo/g-C ₃ N ₄		68.2			30
6	CuCo/g-C ₃ N ₄		75.1			30
7	$Cu_{0.4}Co_{0.6}MoO_4/g-C_3N_4$	14.46	75.7			32
8	Ni _{0.5} Co _{0.5} O-NCN	43.18	76.1	6	83.2	33
9	$\begin{array}{c} mpg-C_3N_4 @Ag_{42}Pd_{58}-\\ AAt \end{array}$	28.2	94.1	5	70	34
10	mpg-CN/Pt (3.82 %)	40.7	202.89	10	77.5	This study
11	Pd ₇₄ Ni ₂₆ /MCN	54.1	246.8			35
12	Ag _{0.1} Co _{0.9} / g-C ₃ N ₄	40.91	249.02	5	52	36
13	mpg-CN/Pt (5.94 %)		274.18			This study
14	Rh/g-C ₃ N ₄	24.2	969	4	44.2	37
15	Au-Co@CN		2897			38
CS=Chitosan, NCN= Nitric-acid treated Carbon Nitride, AAt= Acetis acid treated, MCN= Mesoporous Carbon Nitride,						

Table S4: Catalytic activity of reported mpg-CN based catalysts used for the hydrolysis of AB together with the percentage of initial catalytic activity maintained after the reusability test.

References

- Zhang, H.; Ke, D.; Cheng, L.; Feng, X.; Hou, X.; Wang, J.; Li, Y.; Han, S. CoPt-Co Hybrid Supported on Amino Modified SiO 2 Nanospheres as a High Performance Catalyst for Hydrogen Generation from Ammonia Borane. *Prog. Nat. Sci. Mater. Int.* 2019, 29 (1), 1–9. https://doi.org/10.1016/j.pnsc.2019.01.001.
- (2) Aranishi, K.; Singh, A. K.; Xu, Q. Dendrimer-Encapsulated Bimetallic Pt-Ni Nanoparticles as Highly Efficient Catalysts for Hydrogen Generation from Chemical Hydrogen Storage Materials. *ChemCatChem* 2013, 5 (8), 2248–2252. https://doi.org/10.1002/cctc.201300143.
- (3) Yuan, M.; Cui, Z.; Yang, J.; Cui, X.; Tian, M.; Xu, D.; Ma, J.; Dong, Z. Ultrafine Platinum Nanoparticles Modified on Cotton Derived Carbon Fibers as a Highly Efficient Catalyst for Hydrogen Evolution from Ammonia Borane. *Int. J. Hydrogen Energy* 2017, 42 (49), 29244–29253. https://doi.org/10.1016/j.ijhydene.2017.09.178.
- (4) Zhou, Q.; Xu, C. Stratified Nanoporous PtTi Alloys for Hydrolysis of Ammonia Borane. J. Colloid Interface Sci. 2017, 496, 235–242. https://doi.org/10.1016/j.jcis.2017.02.030.
- (5) Zhou, Q.; Xu, C. Nanoporous PtRu Alloys with Unique Catalytic Activity toward Hydrolytic Dehydrogenation of Ammonia Borane. *Chem. - An Asian J.* **2016**, *11* (5), 705–712. https://doi.org/10.1002/asia.201500970.
- (6) Yao, Q.; Shi, Y.; Zhang, X.; Chen, X.; Lu, Z. H. Facile Synthesis of Platinum– Cerium(IV) Oxide Hybrids Arched on Reduced Graphene Oxide Catalyst in Reverse Micelles with High Activity and Durability for Hydrolysis of Ammonia Borane. *Chem.* - *An Asian J.* 2016, *11* (22), 3251–3257. https://doi.org/10.1002/asia.201601147.
- Gao, M.; Yang, W.; Yu, Y. Monodisperse PtCu Alloy Nanoparticles as Highly Efficient Catalysts for the Hydrolytic Dehydrogenation of Ammonia Borane. *Int. J. Hydrogen Energy* 2018, 43 (31), 14293–14300. https://doi.org/10.1016/j.ijhydene.2018.05.158.
- (8) Zhou, Q.; Qi, L.; Yang, H.; Xu, C. Hierarchical Nanoporous Platinum–Copper Alloy Nanoflowers as Highly Active Catalysts for the Hydrolytic Dehydrogenation of Ammonia Borane. J. Colloid Interface Sci. 2018, 513, 258–265. https://doi.org/10.1016/j.jcis.2017.11.040.
- Xu, Q.; Chandra, M. A Portable Hydrogen Generation System: Catalytic Hydrolysis of Ammonia-Borane. J. Alloys Compd. 2007, 446–447, 729–732. https://doi.org/10.1016/j.jallcom.2007.01.040.
- (10) Yu, P. J.; Hsieh, C. C.; Chen, P. Y.; Weng, B. J.; Chen-Yang, Y. W. Highly Active and Reusable Silica-Aerogel-Supported Platinum-Cobalt Bimetallic Catalysts for the Dehydrogenation of Ammonia Borane. *RSC Adv.* 2016, 6 (113), 112109–112116. https://doi.org/10.1039/C6RA24249A.
- (11) Rakap, M. Poly(N-Vinyl-2-Pyrrolidone)-Stabilized Palladium-Platinum Nanoparticles-Catalyzed Hydrolysis of Ammonia Borane for Hydrogen Generation. J. Power Sources 2015, 276, 320–327. https://doi.org/10.1016/j.jpowsour.2014.11.146.
- (12) Zhou, Q.; Xu, C. Nanoporous PtCo/Co3O4 Composites with High Catalytic Activities

toward Hydrolytic Dehydrogenation of Ammonia Borane. J. Colloid Interface Sci. **2017**, *508*, 542–550. https://doi.org/10.1016/j.jcis.2017.08.054.

- (13) Zhao, H.; Yu, G.; Yuan, M.; Yang, J.; Xu, D.; Dong, Z. Ultrafine and Highly Dispersed Platinum Nanoparticles Confined in a Triazinyl-Containing Porous Organic Polymer for Catalytic Applications. *Nanoscale* **2018**, *10* (45), 21466–21474. https://doi.org/10.1039/c8nr05756g.
- (14) Uzundurukan, A.; Devrim, Y. Carbon Nanotube-Graphene Hybrid Supported Platinum as an Effective Catalyst for Hydrogen Generation from Hydrolysis of Ammonia Borane. *Int. J. Hydrogen Energy* 2019, *44* (49), 26773–26782. https://doi.org/10.1016/j.ijhydene.2019.08.153.
- (15) Deka, J. R.; Budi, C. S.; Lin, C. H.; Saikia, D.; Yang, Y. C.; Kao, H. M. Carboxylic Acid Functionalized Cage-Type Mesoporous Silica FDU-12 as Support for Controlled Synthesis of Platinum Nanoparticles and Their Catalytic Applications. *Chem. - A Eur. J.* 2018, 24 (51), 13540–13548. https://doi.org/10.1002/chem.201802146.
- (16) Hu, Y.; Wang, Y.; Lu, Z. H.; Chen, X.; Xiong, L. Core-Shell Nanospheres Pt@SiO 2 for Catalytic Hydrogen Production. *Appl. Surf. Sci.* 2015, 341, 185–189. https://doi.org/10.1016/j.apsusc.2015.02.094.
- (17) Wang, X.; Liu, D.; Song, S.; Zhang, H. Synthesis of Highly Active Pt-CeO2hybrids with Tunable Secondary Nanostructures for the Catalytic Hydrolysis of Ammonia Borane. *Chem. Commun.* 2012, *48* (82), 10207–10209. https://doi.org/10.1039/c2cc33363e.
- (18) Chandra, M.; Xu, Q. Room Temperature Hydrogen Generation from Aqueous Ammonia-Borane Using Noble Metal Nano-Clusters as Highly Active Catalysts. J. *Power Sources* 2007, 168 (1 SPEC. ISS.), 135–142. https://doi.org/10.1016/j.jpowsour.2007.03.015.
- (19) Rakap, M. Hydrogen Generation from Hydrolysis of Ammonia Borane in the Presence of Highly Efficient Poly(N-Vinyl-2-Pyrrolidone)-Protected Platinum-Ruthenium Nanoparticles. *Appl. Catal. A Gen.* **2014**, 478, 15–20. https://doi.org/10.1016/j.apcata.2014.03.022.
- (20) Zhang, J.; Chen, C.; Chen, S.; Hu, Q.; Gao, Z.; Li, Y.; Qin, Y. Highly Dispersed Pt Nanoparticles Supported on Carbon Nanotubes Produced by Atomic Layer Deposition for Hydrogen Generation from Hydrolysis of Ammonia Borane. *Catal. Sci. Technol.* 2017, 7 (2), 322–329. https://doi.org/10.1039/c6cy01960a.
- (21) Ke, D.; Wang, J.; Zhang, H.; Li, Y.; Zhang, L.; Zhao, X.; Han, S. Fabrication of Pt–Co NPs Supported on Nanoporous Graphene as High-Efficient Catalyst for Hydrolytic Dehydrogenation of Ammonia Borane. *Int. J. Hydrogen Energy* 2017, *42* (43), 26617– 26625. https://doi.org/10.1016/j.ijhydene.2017.09.121.
- (22) Chen, W.; Li, D.; Peng, C.; Qian, G.; Duan, X.; Chen, D.; Zhou, X. Mechanistic and Kinetic Insights into the Pt-Ru Synergy during Hydrogen Generation from Ammonia Borane over PtRu/CNT Nanocatalysts. J. Catal. 2017, 356, 186–196. https://doi.org/10.1016/j.jcat.2017.10.016.
- (23) Chen, W.; Ji, J.; Duan, X.; Qian, G.; Li, P.; Zhou, X.; Chen, D.; Yuan, W. Unique Reactivity in Pt/CNT Catalyzed Hydrolytic Dehydrogenation of Ammonia Borane. *Chem. Commun.* 2014, 50 (17), 2142–2144. https://doi.org/10.1039/c3cc48027e.

- (24) Zhang, J.; Chen, W.; Ge, H.; Chen, C.; Yan, W.; Gao, Z.; Gan, J.; Zhang, B.; Duan, X.; Qin, Y. Synergistic Effects in Atomic-Layer-Deposited PtCox/CNTs Catalysts Enhancing Hydrolytic Dehydrogenation of Ammonia Borane. *Appl. Catal. B Environ.* 2018, 235, 256–263. https://doi.org/10.1016/j.apcatb.2018.04.070.
- (25) Karaca, T.; Sevim, M.; Metin, Ö. Facile Synthesis of Monodisperse Copper–Platinum Alloy Nanoparticles and Their Superb Catalysis in the Hydrolytic Dehydrogenation of Ammonia Borane and Hydrazine Borane. *ChemCatChem* 2017, 9 (22), 4185–4190. https://doi.org/10.1002/cctc.201701023.
- (26) Ge, Y.; Ye, W.; Shah, Z. H.; Lin, X.; Lu, R.; Zhang, S. PtNi/NiO Clusters Coated by Hollow Sillica: Novel Design for Highly Efficient Hydrogen Production from Ammonia–Borane. ACS Appl. Mater. Interfaces 2017, 9 (4), 3749–3756. https://doi.org/10.1021/acsami.6b15020.
- (27) Ren, X.; Lv, H.; Yang, S.; Wang, Y.; Li, J.; Wei, R.; Xu, D.; Liu, B. Promoting Effect of Heterostructured NiO/Ni on Pt Nanocatalysts toward Catalytic Hydrolysis of Ammonia Borane. J. Phys. Chem. Lett. 2019, 10 (23), 7374–7382. https://doi.org/10.1021/acs.jpclett.9b03080.
- (28) Gao, M.; Yu, Y.; Yang, W.; Li, J.; Xu, S.; Feng, M.; Li, H. Ni Nanoparticles Supported on Graphitic Carbon Nitride as Visible Light Catalysts for Hydrolytic Dehydrogenation of Ammonia Borane. *Nanoscale* 2019, *11* (8), 3506–3513. https://doi.org/10.1039/c8nr09005j.
- (29) Jia, H.; Chen, X.; Song, X.; Zheng, X.; Guan, X.; Liu, P. Graphitic Carbon Nitride-chitosan Composites–Anchored Palladium Nanoparticles as High-performance Catalyst for Ammonia Borane Hydrolysis. *Int. J. Energy Res.* 2019, 43 (1), 535–543. https://doi.org/10.1002/er.4290.
- (30) Zhang, H.; Gu, X.; Liu, P.; Song, J.; Cheng, J.; Su, H. Highly Efficient Visible-Light-Driven Catalytic Hydrogen Evolution from Ammonia Borane Using Non-Precious Metal Nanoparticles Supported by Graphitic Carbon Nitride †. 2017. https://doi.org/10.1039/c6ta08987a.
- Nişancı, B.; Turgut, M.; Sevim, M.; Metin, Ö. Three-Component Cascade Reaction in a Tube: In Situ Synthesis of Pd Nanoparticles Supported on Mpg-C₃ N₄, Dehydrogenation of Ammonia Borane and Hydrogenation of Nitroarenes. *ChemistrySelect* 2017, 2 (22), 6344–6349. https://doi.org/10.1002/slct.201701188.
- (32) Li, J.; Li, F.; Liao, J.; Liu, Q.; Li, H. Cu0.4 Co0.6 MoO4 Nanorods Supported on Graphitic Carbon Nitride as a Highly Active Catalyst for the Hydrolytic Dehydrogenation of Ammonia Borane. *Catalysts* 2019, 9 (9). https://doi.org/10.3390/catal9090714.
- (33) Shang, Y.; Feng, K.; Wang, Y.; Sun, X.; Zhong, J. Carbon Nitride Supported Ni0.5Co0.5O Nanoparticles with Strong Interfacial Interaction to Enhance the Hydrolysis of Ammonia Borane. *RSC Adv.* **2019**, *9* (20), 11552–11557. https://doi.org/10.1039/c9ra01743g.
- (34) Kahri, H.; Sevim, M.; Metin, Ö. Enhanced Catalytic Activity of Monodispersed AgPd Alloy Nanoparticles Assembled on Mesoporous Graphitic Carbon Nitride for the Hydrolytic Dehydrogenation of Ammonia Borane under Sunlight. *Nano Res.* 2017, *10* (5), 1627–1640. https://doi.org/10.1007/s12274-016-1345-x.

- (35) Wang, W.; Lu, Z.-H.; Luo, Y.; Zou, A.; Yao, Q.; Chen, X. Mesoporous Carbon Nitride Supported Pd and Pd-Ni Nanoparticles as Highly Efficient Catalyst for Catalytic Hydrolysis of NH 3 BH 3. *ChemCatChem* 2018, 10 (7), 1620–1626. https://doi.org/10.1002/cctc.201701989.
- (36) Wang, Q.; Xu, C.; Ming, M.; Yang, Y.; Xu, B.; Wang, Y.; Zhang, Y.; Wu, J.; Fan, G. In Situ Formation of AgCo Stabilized on Graphitic Carbon Nitride and Concomitant Hydrolysis of Ammonia Borane to Hydrogen. *Nanomaterials* 2018, 8 (5). https://doi.org/10.3390/nano8050280.
- (37) Lu, R.; Hu, M.; Xu, C.; Wang, Y.; Zhang, Y.; Xu, B.; Gao, D.; Bi, J.; Fan, G. Hydrogen Evolution from Hydrolysis of Ammonia Borane Catalyzed by Rh/g-C3N4 under Mild Conditions. *Int. J. Hydrogen Energy* **2018**, *43* (14), 7038–7045. https://doi.org/10.1016/j.ijhydene.2018.02.148.
- (38) Guo, L. T.; Cai, Y. Y.; Ge, J. M.; Zhang, Y. N.; Gong, L. H.; Li, X. H.; Wang, K. X.; Ren, Q. Z.; Su, J.; Chen, J. S. Multifunctional Au-Co@CN Nanocatalyst for Highly Efficient Hydrolysis of Ammonia Borane. ACS Catal. 2015, 5 (1), 388–392. https://doi.org/10.1021/cs501692n.