Cobalt nanoparticles embedded in N-doped carbon nanotubes on the reduced graphene oxide as efficient oxygen catalyst for Zn-air battery

Xiaomin Peng[†], Licheng Wei [†], Yiyi Liu, Tianlun Cen, Zhifeng Ye, Zhaogen Zhu,

Zhaotong Ni, Dingsheng Yuan*

[†] These authors contributed equally to this work.

* Corresponding author. Fax: + 862085221697.

E-mail address: tydsh@jnu.edu.cn

School of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China

Fig. S1. (a) Survey XPS spectra and high-resolution. XPS spectra of N 1s (b) and Co 2p (c) in Co@N-CNT/rGO-0.1.

Fig. S2. CV curves of Co@N-CNT/rGO-0.1 in N_2 - and O_2 -saturated 0.1 M KOH solution.

Fig. S3. LSV curves of Co@N-CNT/rGO-0.05, Co@N-CNT/rGO-0.2 and Co@N-CNT/rGO-0.1

Fig. S4. (a) The ORR polarization curves of Co@N-CNT/rGO-0.1 at initial and after 5000 CV cycles. (b) The OER stability of Co@N-CNT/rGO-0.1 under a constant voltage of 1.68 V (vs RHE)

Fig. S5. The TEM image of Co@N-CNT/rGO-0.1 after long-term cycling test.

Catalysts	$\Delta \mathbf{E} (\mathbf{V}) = \mathbf{E}_{\mathbf{j}=10} - \mathbf{E}_$	Liquid Zn–air battery			References
	E _{1/2}	Charge/disc harge voltage gap (V)	Current density (mA cm ⁻²)	Cycling time (h)	- -
ZnCo-ZIF@ GO	0.90	1.05	10	25	1
ZnCo ₂ O ₄ /N-C NT	0.78	0.84	10	5.3	2
MnO@Co-N/ C	0.93	0.75	5	633	3
CoNi/BCF	0.80	0.95	10	30	4
NiCo2O4/CN Ts	0.88	0.84	10	200	5
Co ₉ S ₈ /P@CS- 1:2	/	0.9	5	350	6
Co-N-CNTs	0.81	0.80	5	10	7
Co@NCNT/r GO-0.1	0.87	0.80	5	125	This work

Table. S1. Comparison of the performances of Zn–air batteries with recently reported representative bifunctional electrocatalysts.

References

- Xiao, Y.; Guo, B.; Zhang, J.; Hu, C.; Ma, R.; Wang, D.; Wang, J. A Bimetallic MOF@graphene Oxide Composite as an Efficient Bifunctional Oxygen Electrocatalyst for Rechargeable Zn–Air Batteries. *Dalton Trans.* 2020, 49 (17), 5730–5735.
- [2] Liu, Z. Q.; Cheng, H.; Li, N.; Ma, T. Y.; Su, Y. Z. ZnCo₂O₄ Quantum Dots Anchored on Nitrogen-Doped Carbon Nanotubes as Reversible Oxygen Reduction/Evolution Electrocatalysts. *Adv. Mater.* **2016**, *28* (19), 3777–3784.
- [3] Chen, Y. N.; Guo, Y.; Cui, H.; Xie, Z.; Zhang, X.; Wei, J.; Zhou, Z. Bifunctional Electrocatalysts of MOF-Derived Co–N/C on Bamboo-like MnO Nanowires for High-Performance Liquid- and Solid-State Zn–Air Batteries. *J. Mater. Chem. A* 2018, 6 (20), 9716–9722.
- [4] Xu, Y.; Huang, Z.; Wang, B.; Liang, Z.; Zhang, C.; Wang, Y.; Zhang, W.; Zheng, H.; Cao, R. A Two-Dimensional Multi-Shelled Metal–Organic Framework and Its Derived Bimetallic N-Doped Porous Carbon for Electrocatalytic Oxygen Reduction. *Chem. Commun.* 2019, 55 (98), 14805–14808.
- [5] Xiao, X.; Li, X.; Wang, J.; Yan, G.; Wang, Z.; Guo, H.; Liu, Y. Robust Assembly of Urchin-like NiCo₂O₄/CNTs Architecture as Bifunctional Electrocatalyst in Zn-Air Batteries. *Ceram. Int.* 2020, 46 (5), 6262–6269.
- [6] Li, W.; Li, Y.; Fu, H.; Yang, G.; Zhang, Q.; Chen, S.; Peng, F. Phosphorus Doped Co₉S₈@CS as an Excellent Air-Electrode Catalyst for Zinc-Air Batteries. *Chem. Eng. J.* 2020, 381, 122683.

[7] Wang, T.; Kou, Z.; Mu, S.; Liu, J.; He, D.; Amiinu, I. S.; Meng, W.; Zhou, K.;
Luo, Z.; Chaemchuen, S.; Verpoort, F. 2D Dual-Metal Zeolitic-Imidazolate-Framework-(ZIF)-Derived Bifunctional Air Electrodes with Ultrahigh Electrochemical Properties for Rechargeable Zinc–Air Batteries. *Adv. Funct. Mater.* 2018, 28 (5), 1705048.