Supporting Information

Unravelling Proximity-Driven Synergetic Effect within CIZO-SAPO Bifunctional Catalyst for CO₂ Hydrogenation to DME

Libo Yao, Xiaochen Shen, Yanbo Pan, Zhenmeng Peng*

Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325, United States.

*Corresponding author

E-mail address: zpeng@uakron.edu

Contents

Figure S1-S2 Characterization of CIZO and CIZO-SAPO.

Figure S3 Catalytic properties of CIZO for CO₂ hydrogenation.

Figure S4-S6 In situ DRIFTS spectra for CO₂, DME and methanol-related species.

Figure S7 Comparison of DRIFTS spectra between CIZO-SAPO and CIZO.

Figure S8 DRIFTS spectra for methanol dehydration on CIZO-SAPO.

Table S1 Physical properties of commercial SAPO-34

Table S2-S4 Assignment of peaks from DRIFTS spectra.

Table S5 CO formation rate comparison

Table S6 Comparison of CO₂ to DME performance with state-of-the-art catalysts.

Reference.

Fig. S1. XRD patterns of SAPO, CIZO and 50CIZO-50SAPO bifunctional catalysts.

Fig. S2. TEM image of $Cu_{0.25}$ -In_{0.75}-Zr_{0.25}-O (CIZO).

Fig. S3. Catalytic properties of CIZO catalyst. Reaction condition: P=30 bar, GHSV= $6000 \text{ ml/}(g_{cat} \cdot h)$.

Fig. S4. Time-evolved DRIFTS spectra of gas methanol feeding followed by Ar purging over reduced 50CIZO-50SAPO bifunctional catalyst at 30 °C.

Fig. S5. Time-evolved DRIFTS spectra of DME feeding followed by Ar purging over reduced 50CIZO-50SAPO bifunctional catalyst at 30 °C.

Fig. S6. DRIFTS spectra of CO₂, methanol and DME over reduced 50CIZO-50SAPO surface. T:250 °C, flow rate: 20 mL/min.

Fig. S7. Comparison of DRIFTS spectra among mortar and direct mixing CIZO-SAPO, and CIZO catalysts for CO₂ hydrogenation reaction. T:250 °C, P= 7 bar, flow rate: 20 mL/min.

Fig. S8 Time-evolved DRIFTS spectra of methanol dehydration to DME on 50CIZO-50SAPO catalyst. T=250 °C, flow rate: 20 ml/min, methanol composition: 17%. (Estimated by methanol saturated vapor pressure at 25 °C) Methanol was fed starting from 0 min.

Properties	Values
Specific surface area (m ² /g)	≥550
Pore volume (cm^{3}/g)	≥0.27
Average particle size (µm)	2
Component content (%)	
SiO_2	10
Al ₂ O ₃	42
Na ₂ O	0.1

Table S1. Physical Properties of SAPO-34^a.

a. Obtained from supplier.

Species	Wavenumber	Assignment
	(cm ⁻¹)	(000)
CO _{2(ads)}	1616	$v_{as}(OCO)$
Methoxy	1028	v(OCH ₃)
	2975	
	2939	$\nu(CH_x) +$
	2890	$\delta(CH_x)$
	2838	

Table S2. Assignment of CO₂ hydrogenation related intermediate species in DRIFTS spectra.

CH ₃	OH _(g)	CH ₃ O	H _(ads)
Wavenumber	Assignment	Wavenumber	Assignment
2982	v(OCO)	2975	ν(OCO)
2922	δ(CH _x)	2939	δ(CH _x)
2865	$\nu(CH_x)$	2890	$\nu(CH_x)$
2843	v(CH)	2838	v(CH)
2077	v(C-O)	1670	v(OCO)
2052		1628	
1666	v(OCO)	1216	
1628		1028	v(OCH ₃)
1256			
1210			
1141			
1056	v(OCH ₃)		
1031			
1015			

Table S3. Peak positions and assignments of gaseous and adsorbed methanol related species.

CH ₃ C	DCH _{3(g)}	CH ₃ OC	CH _{3(ads)}
Wavenumber	Assignment	Wavenumber	Assignment
(cm ⁻¹)	Assignment	(cm ⁻¹)	Assignment
2113	v(C-O)	1475	δ(CH _x)
2100	$v_{as}(OCO)$	1457	
2040		1228	v(OCO)
2023	v(OCH ₃)	1192	v(OCH ₃)
1454	$\delta(CH_x)$	1015	
1191	$\nu(OCH_3)$	937	-
1163		895	-
1120		815	-
1100			
1090			
917	-		
907	-		

Table S4. Peak position and assignment of gaseous and adsorbed DME related species.

 Table S5. Comparison of CO formation rate between CIZO and CIZO-SAPO catalyst.

Catalyst	CIZO	50CIZO-50SAPO
CO yield (mg/g _{cat} /h)	62.4	96.3

Catalysts	Reaction conditions	CO ₂ conversion (%)	DME selectivity (%)	Ref
CuInZr/SAPO-34	250 °C, 30 bar, 6000 ml/(g _{cat} h)	4.3	60.6	Present work
CuZnZr/FER	260 °C, 50 bar, 8000 ml/(g _{cat} h)	13.6	38.3	1
CuZnZr/ZSM-5	220 °C, 30 bar, 9000 ml/(g _{cat} h)	9.0	48.4	2
CuZnZr/MFI	240 °C, 30 bar, 10000 ml/(g _{cat} h)	15.3	38.1	3
Pd- CuZnZr/HZSM-5	200 °C, 30 bar, 1000 h ⁻¹	8.91	32.2	4
PdZn/Al ₂ O ₃	220 °C	4.9	59.8	5
La- CuZnAl/HZSM-5	250 °C, 30 bar, 3000 h ⁻¹	25.1	17.3	6

Table S6. Comparison of CO_2 to DME performance among state-of-the-art catalysts.

Reference

Bonura, G.; Cannilla, C.; Frusteri, L.; Mezzapica, A.; Frusteri, F. DME production by CO₂ hydrogenation: Key factors affecting the behaviour of CuZnZr/ferrierite catalysts. *Catal. Today.* 2017, 281, 337-344.

(2) Bonura, G.; Cordaro, M.; Cannilla, C.; Mezzapica, A.; Spadaro, L.; Arena, F.; Frusteri, F. Catalytic behaviour of a bifunctional system for the one step synthesis of DME by CO₂ hydrogenation. *Catal. Today.* **2014**, 228, 51-57.

(3) Frusteri, F.; Bonura, G.; Cannilla, C.; Ferrante, G. D.; Aloise, A.; Catizzone, E.; Migliori, M.; Giordano, G. Stepwise tuning of metal-oxide and acid sites of CuZnZr-MFI hybrid catalysts for the direct DME synthesis by CO₂ hydrogenation. *Appl. Catal. B-Environ.* **2015**, 176, 522-531.

(4) Sun, K.; Lu, W.; Wang, M.; Xu, X. Low-temperature synthesis of DME from CO₂/H₂ over Pdmodified CuO-ZnO-Al₂O₃-ZrO₂/HZSM-5 catalysts. *Catal. Commun.* **2004**, *5*, 367-370.

(5) Bahruji, H.; Armstrong, R. D.; Ruiz Esquius, J.; Jones, W.; Bowker, M.; Hutchings, G. J. Hydrogenation of CO₂ to Dimethyl Ether over Brønsted Acidic PdZn Catalysts. *Ind. Eng. Chem. Res.* **2018**, 57, 6821-6829.

(6) Wengui, G.; Hua, W.; Yuhao, W.; Wei, G.; Miaoyao, J. Dimethyl ether synthesis from CO₂ hydrogenation on La-modified CuO-ZnO-Al₂O₃/HZSM-5 bifunctional catalysts. *J. of Rare. Earth.*2013, 31, 470-476.