Organocatalytic Ring-Opening Polymerization toward Poly(γ-amide-ε-caprolactone)s with Tunable LCSTs

Supporting Information

Lianlei Wen^{[†][1]}, Shaoze Zhang^{[†][2]}, Yan Xiao^{*[1]}, Jin He^[1], Shuang Zhu^[1], Jun Zhang^[1], Zihan

Wu^[1], *Meidong Lang*^{*[1]}

[1] Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology (China)

[2] National Engineering Laboratory for Vacuum Metallurgy, Engineering Laboratory for Advanced Battery and Materials of Yunnan Province, Kunming University of Science and Technology (China)

[†] These authors contributed equally.

Table of Contents

1 Experimental detail	S2
1.1 Materials	S2
1.2 Instruments and measurements	S2
1.3 Procedure of monomer preparation	S3
1.4 General procedure for homo-polymerization	S8
1.5 Kinetics of Polymerization	S10
1.6 General procedure for co-polymerization	S10
1.7 Deprotection of co-polymer	S11
1.8 Deprotection of co-polymer	S12
1.9 Preparation of P(VPyCL _{89%} -co- PIL _{11%}) ₂₀ -NHS	S13
1.10 Thermal properties of polymers	S13
2 Computer simulation	S20
2.1 The enthalpies of ring opening	S20

2.2 The independent gradient model (IGM) analysis	S21
3 The degradation experiments of $poly(\gamma-amide-\varepsilon-caprolactone)s$	S44
4 Cell viability experiments of poly(γ -amide- ε -caprolactone)s	S45
5 Poly(γ -amide- ε -caprolactone)s /enzyme bioconjugation	S46
5.1 Preparation of modified HRP	S46
5.2 Measurement of modified degree	S47
5.3 Measurement of enzyme activity	S47

1. Experimental detail

1.1 Materials

Ethyl 2-cyclohexanonecarboxylate (98%), concentrated sulfuric acid (70wt%), 3-(3dimethylaminopropyl)-1-ethylcarbodiimide hydrochloride (EDC) (98%), N-hydroxysuccinimide (99%), isopropylamine (99%), (98%), 1-propanamine diethylamine(99%), (NHS) pyrrolidine(99%), aminocyclopropan, benzyl alcohol (BnOH,99%), 3-Chloroperoxybenzoic Acid (m-CPBA), 1,5,7-triazabicyclo[4.4.0]Dec-5-Ene (TBD) (97%), 1,8-diazabicyclo[5.4.0]-7undecene (DBU) (99%), S-1-dodecyl-S'-(α', α'' -dimethyl- α''' -acetic acid) trithiocarbonate, azodiisobutyronitrile (AIBN), N-isopropylacrylamide, tannous octoate (Sn(Oct)₂)(99%), trifluoroacetic Acid (99%) and 4-oxopiperidinium chloride (97%) were purchased from Adamas. 3,3',5,5'-tetramethylbenzidine(TMB) (99%) and trinitrobenzene sulfonic acid (TNBS) (99%) were purchased Sigma-Aldrich, other reagents were purchased from Greagent. Unless otherwise noted, all commercial reagents and solvents were directly used.

Thiourea (TU)were prepared according to the literature.¹

TMB-A solution: 13.6g sodium acetate, 1.6g citric acid, 0.3ml 30% hydrogen peroxide, and 500ml distilled water.

TMB-B solution: 0.2g disodium ethylenediamine tetraacetate, 0.95g citric acid 0.95g, glycerol 50ml, 0.15g TMB and 500ml distilled water

10mM phosphate buffer (PBS) solution: 8g sodium chloride, 0.2g potassium chloride, 1.44g disodium hydrogen phosphate 0.24g mono potassium phosphate and 800ml distilled water. Then,

pH of solution was adjusted to 7.4 with HCl solution. Finally, volume was adjusted to 1L with additional distilled water.

1.2 Instruments and measurements

¹H NMR and ¹³C NMR spectrum were measured on a Bruker AVANCE III 400 MHz (¹H NMR) or 150MHz (¹³C NMR) instrument at room temperature with CDCl₃ as the solvent. Molecular weight and molecular weight distribution of the polymers were estimated by an Agilent Technologies 1260 Infinity containing a refractive index detector, and the flow rate was 1.0 mL/min. the columns for DMF (containing 0.01 M LiBr) as an eluent included 10 µm MIXED-BLS, 5µm MIXED-C, and 5µm MIXED-D. The temperature for DMF was 50°C. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was carried out using a Bruker Ultraflextreme spectrometer in which 9-Nitroanthracene was used as the matrix, and NaI was used as the cationic reagent in the linear positive model. Glass transition temperatures (T_g) of polymer were determined using a TA Q2000 DSC with a liquid N₂ cooling unit and a heating/cooling rate of 10 °C/min. Transmittance measurement was measured on a vis-UV chromatogram analyzer (Shanghai Zhetu science apparatus company limited) with a thermostat sample holder, and the heating rate was 1°C/min. Sample has a 5wt% or 1wt% concentration in D₂O or deionized water. Temperature-variable ¹H NMR spectra were recorded on Varian Mercury plus (600 MHz) spectrometer using D₂O as solvent (concentration=5wt%) with an increment of 5°C. The sample of polymer solution (concentration=5wt% in D₂O) for FT-IR measurements was prepared by being sealed between two CaF₂ tablets. All time-resolved FT-IR spectra at different temperatures were recorded on a Nicolet Nexus 470 spectrometer with a resolution of 4 cm⁻¹, and 32 scans were available for an acceptable signal-to-noise ratio. Temperatures were manually controlled with an electronic cell holder at rates of ca. 0.3°C/min with an increment of 0.9°C. Raw spectra were baseline-corrected by the software Omnic, ver. 6.1a. Calorimetric measurements of polymer solution (concentration=5wt% in D₂O) were performed on a Mettler-Toledo differential scanning calorimeter (DSC) thermal analyzer with varying scanning rates from 0 to 50°C.

1.3 Procedure of monomer preparation

Preparation of 4-oxocyclohexane-1-carboxylic acid

4-Oxocyclohexane-1-carboxylic acid was synthesized according to the literature procedure.^[2] A solution of ethyl 4-ketocyclohexanecarboxylate (100g, 70mmol) in 2wt% H₂SO₄ was heated to 105° C for 4 h. The cooled solution was extracted with ethyl ether, and the organic

layer was separated, dried over magnesium sulfate, filtered, concentrated. A white solid was obtained (5.1g, 71% yield, white solid).

4-oxocyclohexane-1-carboxylic acid:

¹H NMR (400 MHz, CDCl₃) *δ*=11.6(s, 1H), 2.89–2.78 (m, 1H), 2.60-2.46 (m, 2H), 2.46–2.34 (m, 2H), 2.32-2.19 (m, 2H), 2.15-1.96 (m, 2H).

Preparation of 4-oxo-N-propylcyclohexane-1-carboxamide

4-Oxocyclohexane-1-carboxylic acid (20g) was dissolved in 400ml CH_2Cl_2 . Then EDC and NHS were added into solution in room temperature. after 3h. 10ml 1-Propanamine was dropwise added with continuous stirring for 24h. the mixture were filtered and the solvent was removed under reduced pressure. Purification by column chromatography on silica gel using pure ethyl acetate (R_f =4,0) as the eluant afforded 17.6g (68% yield) of the white powder:

N-isopropyl-4-oxocyclohexane-1-carboxamide (16.5g, 63% yield, white powder), *N*, *N*-diethyl-4-oxocyclohexane-1-carboxamide (16.2g ,57% yield, white powder), 4-(pyrrolidine-1-carbonyl) cyclohexan-1-one (16.0g, 59% yield, white powder) were synthesized using the similar steps above.

4-oxo-*N*-propylcyclohexane-1-carboxamide:

¹H NMR (400 MHz, CDCl₃) δ =5.67(s, 1H), 3.31–3.14 (q, *J*=8Hz, 2H), 2.58–2.45 (m, 3H), 2.39–2.25 (m, 2H), 2.22-2.01 (m, 2H), 2.05–1.91 (m, 2H), 1.62–1.41 (m, 2H), 0.92 (t, *J*= 8Hz, 3H).

N-isopropyl-4-oxocyclohexane-1-carboxamide:

¹H NMR (400 MHz, CDCl₃) δ =5.39(s, 1H), 4.23–4.03 (m, 1H), 2.70–2.45 (m, 3H), 2.44–2.28 (m, 2H), 2.26-2.11 (m, 2H), 2.10-1.97 (m, 2H), 1.40-1.03 (d, *J*= 8Hz, 6H).

N, *N*-diethyl-4-oxocyclohexane-1-carboxamide:

¹H NMR (400 MHz, CDCl₃) *δ*=3.42-3.19 (m, 4H), 2.89-2.71 (m, 1H), 2.54–2.19 (m, 4H), 2.06–1.87 (m, 4H), 1.20-0.97 (m, 6H).

4-(pyrrolidine-1-carbonyl) cyclohexan-1-one:

¹H NMR (400 MHz, CDCl₃) δ =3.51 (s, 4H), 2.88-2.71 (m, 1H), 2.63-2.50(m, 2H), 2.41-2.24 (m, 2H), 2.14–1.80 (m, 8H).

Preparation of 7-oxo-*N*-propyloxepane-4-carboxamide (NNCL)

4-Oxo-*N*-propylcyclohexane-1-carboxamide (10g) was dropwise added into the CH_2Cl_2 solution of 20g m-CPBA in the ice-water bath. Then the reaction was stirred for another 48h in room temperature. The mixture was filtered and the solvent was removed under reduced pressure. The residue was participated in 100ml anhydrous ether three times repeatedly to collect 9.6g (84% yield) NNCL of the white powder.

N-isopropyl-7-oxooxepane-4-carboxamide (NICL) (8.9g, 82% yield, white powder), *N*, *N*-diethyl-7-oxooxepane-4-carboxamide (DECL) (7.4g, 81% yield, Crystal solid), 5-(pyrrolidine-1-carbonyl)oxepan-2-one(VPyCL) (7.7g, 83% yield, white powder) were synthesized using the similar steps above.

7-oxo-*N*-propyloxepane-4-carboxamide(NNCL):

¹H NMR (400 MHz, CDCl₃) *δ*=5.72(s, 1H), 4.60-4.42 (m, 1H), 4.26-4.10(m, 1H), 4.26–3.90 (m, 1H), 3.27–3.14 (q, *J*=8Hz, 2H), 2.99–2.83 (m, 1H), 2.68-2.54 (m, 1H), 2.50–2.37 (m, 1H), 2.19–1.87 (m, 4H), 1.60–1.43 (m, 2H),0.92 (t, *J*=4Hz, 6H).

¹³C NMR (150MHz, CDCl₃): δ =175.56(OCOCH₂), 173.77(CHCONH), 67.02(OCH₂CH₂CH₂), 45.92(CH₂CH(CO)CH₂), 41.15(NHCH₂CH₂), 32.27(COCH₂CH₂CH₂), 32.18(CH₂CH₂CH), 25.78(CH₂CH₂CH), 22.74(CH₂CH₂CH₃), 11.32(CH₂CH₃).

FT-IR (v, cm⁻¹): 1733.86 (C=O of ester bond), 1633.10, (C=O of amide bond).

EI-MS: m/z =199.1.

DSC: T_m= 89.74°C.

Solubility: Dichloromethane (CH₂Cl₂), ethyl acetate, methanol, H₂O and *et al*.

Morphology: White power.

N-isopropyl-7-oxooxepane-4-carboxamide(NICL):

¹H NMR (400 MHz, CDCl₃) *δ*=5.72(s, 1H), 4.51-4.40 (m, 1H), 4.22-4.10(m, 1H), 4.07–3.90 (m, 1H), 2.94–2.80 (m, 1H), 2.64–2.50 (m, 1H), 2.46-2.33 (m, 1H), 2.08–1.76 (m, 4H), 1.19-0.99 (d, *J*= 4Hz, 6H).

¹³C NMR (150MHz, CDCl₃): δ =175.61(OCOCH₂), 172.88(CHCONH), 67.04(OCH₂CH₂), 46.07(CH₂CH(CO)CH₂), 41.23(NHC(CH₃)₂), 32.28(COCH₂CH₂), 32.14(CH₂CH₂CH), 25.72(CH₂CH₂CH), 22.58(C(CH₃)₂).

FT-IR (v, cm⁻¹): 1739.63 (C=O of ester bond), 1632.08, (C=O of amide bond).

ESI-MS: m/z =199.1

DSC: T_m=158.22°C

Solubility: CH₂Cl₂, ethyl acetate, methanol, H₂O and *et al*.

Morphology: White power.

N, *N*-diethyl-7-oxooxepane-4-carboxamide (DECL):

¹H NMR (400 MHz, CDCl₃) *δ*=4.68-4.42 (m, 1H), 4.30-4.12 (m, 1H), 3.35 (s, 4H), 3.01-2.88 (m, 1H), 2.87-2.75 (m, 1H), 2.69-2.54 (m, 1H), 2.19 – 1.89 (m, 4H), 1.26-1.05 (m, 6H).

¹³C NMR (150MHz, CDCl₃): δ =175.38(OCOCH₂), 173.10(CHCON), 67.01(OCH₂CH₂), 41.99(CH₂CH(CO)CH₂), 40.95(N(CH₂CH₃)₂), 32.19(COCH₂CH₂), 25.68(CH₂CH₂CH₂), 15.09(CH₂CH₂CH), 13.03(CH₂CH₃).

FT-IR (v, cm⁻¹): 1719.58 (C=O of ester bond), 1627.38, (C=O of amide bond).

EI-MS: m/z =213.1

DSC: $T_m = 75.01^{\circ}C$

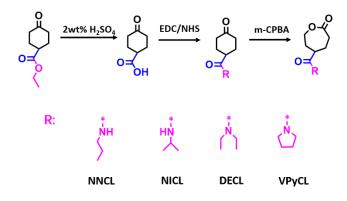
Solubility: CH₂Cl₂, ethyl acetate, methanol, H₂O and *et al*.

Morphology: Crystal solid.

5-(pyrrolidine-1-carbonyl)oxepan-2-one(VPyCL):

¹H NMR (400 MHz, CDCl₃) δ = 4.63-4.46 (m, 1H), 4.27-4.11 (m, 1H), 3.46 (t, *J* = 8 Hz, 4H), 3.04–2.89 (m, 1H), 2.80-2.70 (m, 1H), 2.67 – 2.51 (m, 1H), 2.20 – 1.76 (m, 8H).

¹³C NMR (150MHz, CDCl₃): δ =175.43(OCOCH₂), 172.38(CHCON), 66.87(OCH₂CH₂), 46.54,45.91(N(CH₂CH₂)₂), 42.78(CH₂CH(CO)CH₂), 32.22(COCH₂CH₂), 31.57(CH₂CH₂CH₂), 24.99(CH₂CH₂CH), 24.11(N(CH₂CH₂)₂).


FT-IR (v, cm⁻¹): 1724.01 (C=O of ester bond), 1627.29 (C=O of amide bond).

EI-MS: m/z = 211.1

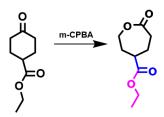
DSC: $T_m = 124.01^{\circ}C$

Solubility: CH_2Cl_2 , ethyl acetate, methanol, H_2O and *et al*.

Morphology: White power.

Scheme S1. The synthesized route of γ -amide- ε -caprolactones.

Preparation of ethyl 7-oxooxepane-4-carboxylate (EMCL):


Ethyl 4-ketocyclohexanecarboxylate (10g) was dropwise added into the CH₂Cl₂ solution of 17g m-CPBA in the ice-water bath. Then the reaction was stirred for another 24 h in room temperature. The mixture was filtered and the solvent was washed successively with saturated Na₂S₂O₃ solution (three times), NaHCO₃ solution (three times) and NaCl solution (three times). The organic extraction was dried with anhydrous MgSO₄, filtered and purified by column chromatography (silica gel, R_f =2,0, petroleum ether (PE): ethyl acetate (Et₂O) = 1:1). The resulting product is transparent crystal (6.3g, 58%yield, transparent crystal).

Ethyl 7-oxooxepane-4-carboxylate (EMCL):

¹H NMR (400 MHz, CDCl₃) δ = 4.45-4.31 (m, 1H), 4.27-4.07 (m, 3H), 2.88-2.59(m, 3H), 2.27–1.88 (m, 4H), 1.35–1.19 (t, *J*=, 4Hz, 3H).

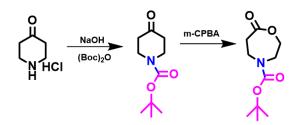
Solubility: CH₂Cl₂, ethyl acetate, methanol and *et al*.

Morphology: Transparent crystal.

Scheme S2. The synthesized route of ethyl 7-oxooxepane-4-carboxylate (EMCL).

Preparation of tert-butyl 7-oxo-1,4-oxazepane-4-carboxylate (Boc-NIPIL):

4-Oxopiperidinium chloride(10g) and NaOH(3g) were added into 100ml water. Then reaction was stirred until the solid was completely dissolved. Di-tert-butyl dicarbonate (7.2g, dissolved in 20ml THF) was dropwise to the above solution at 0°C. After 8h, the mixture was extracted using dichloromethane three times and the organic layer was separated. Organic extraction was washed with saturated NaCl solution (three times). After organic extraction was dried with anhydrous MgSO₄, filtered organic solution was concentrated to obtain preliminary intermediate (12.5g, 87% yield). Intermediate was directly reacted without further purification.


Above intermediate (5g) was dropwise added into the CH₂Cl₂ solution of 6g m-CPBA in the ice-water bath. Then the reaction was stirred for another 24 h in room temperature. The mixture was filtered and the solvent was washed successively with saturated Na₂S₂O₃ solution (three times), NaHCO₃ solution (three times) and NaCl solution (three times). The organic extraction was dried with anhydrous MgSO₄, filtered and concentrated to obtain the crude product. Crude product was further purified by recrystallizing twice using THF and n-Hexane as solvent. The resulting product was white granular crystal (3.8g, 71% yield, white granular crystal).

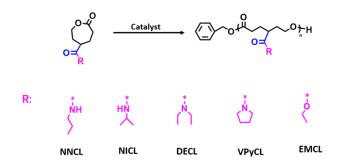
Tert-butyl 7-oxo-1,4-oxazepane-4-carboxylate (Boc-NIPIL):

¹H NMR (400 MHz, CDCl₃) δ = 4.36-4.18 (m, 2H), 3.81-3.60 (m, 4H), 2.90-2.74 (m, 2H), 1.48 (s, 9H).

Solubility: CH₂Cl₂, ethyl acetate, methanol and *et al*.

Morphology: White granular crystal.

Scheme S3. The synthesized route of ethyl 7-oxooxepane-4-carboxylate (EMCL)


1.4 General procedure for homo-polymerization

Organic catalyst such as TBD to catalyze the polymerization: NNCL (100mg, 502umol) was add into 10ml flame-dried Schlenk flask containing a magnetic stir bar and vacuumized 3h in the 50°C oil pot. Then benzyl alcohol solution (13.2uL, benzyl alcohol was dissolved in the methylbenzene with a 0.1028g/ul concentration) and dry CH_2Cl_2 (0.5mL) was added into the flash. To this solution, TBD (3.4mg, 25.1umol, relative to the monomer molar mass) was added to initiate polymerization. The reaction mixture was allowed to stir at room temperature in an argon protective atmosphere. After reaching the predetermined time, about 20 ul of acetic acid was added into the flash to quenched reaction. Slight crude products were taken out from the system to dry in vacuum. Monomer conversion and the molecular weight of those rude products were precipitated in anhydrous ether third times and dried in vacuum to further characterize.

Poly(*N*-isopropyl-4-oxocyclohexane-1-carboxamide) (PNICL), Poly(*N*, *N*-diethyl-7-oxooxepane-4-carboxamide) (PDECL), Poly(5-(pyrrolidine-1-carbonyl)oxepan-2-one) (VPyCL), Poly(ethyl 7-oxooxepane-4-carboxylate)(PEMCL), with TBD catalyzing, were prepared followed by the above procedure.

Organic metal catalyst $Sn(Oct)_2$ to catalyze the polymerization: NNCL (100mg, 502µmol), benzyl alcohol (13.2µL, benzyl alcohol was dissolved in the methylbenzene with a 0.1028g/ul concentration) was added in the a 10ml flame-dried Schlenk flask containing a magnetic stir bar, vacuumized 3h in the 50°C oil pot, Then $Sn(Oct)_2$ solution (9.6uL, $Sn(Oct)_2$ was dissolved in the methylbenzene with a 0.1028g/ul concentration, relative to the monomer weight) was added into the flash. The reaction mixture was allowed to stir at 130°C in an argon protective atmosphere. After 24h, reaction was cooled and in 0.5 ml CH₂Cl₂ and precipitated in ether twice. Slight crude products were taken out from the system to dry in vacuum. Monomer conversion and the molecular weight of those rude products were determined by ¹H NMR spectroscopy and GPC, respectively. Residual products were dissolved in 0.5 ml CH₂Cl₂ and precipitated in anhydrous ether third times and dried in vacuum to further characterize.

Poly(*N*-isopropyl-4-oxocyclohexane-1-carboxamide) (PNICL), Poly(*N*, *N*-diethyl-7-oxooxepane-4-carboxamide) (PDECL), Poly(5-(pyrrolidine-1-carbonyl)oxepan-2-one) (VPyCL) with $Sn(Oct)_2$ catalyzing were prepared followed by the above procedure.

Scheme S4. ROP of γ -amide- and γ -ester- ε -caprolactones

Poly(N-isopropyl-4-oxocyclohexane-1-carboxamide)(PNICL) (DP:40)

¹H NMR (400 MHz, CDCl₃) (DP:40) *δ*=6.90-6.20(s, 33H), 4.24-3.95(m, 117H), 2.51-1.17(m, 117H), 2.06-1.86(m, 77H), 1.84-1.65(m, 80H), 1.20-1.06(m, 238H).

MALDI-tof-MS: PNICL had a precise structure with a benzyl group and an OH group at two terminals. For example, the observed value, m/z = 2123.1, agrees with the theory value of PNICL with degree of polymerization of 10 [108.1(M_{initiator}) + 199.1(M_{monomer}) ×10+ 23.0(M_{Na+}) = 2123.1].

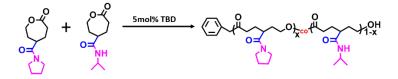
Poly(N, N-diethyl-7-oxooxepane-4-carboxamide) (PDECL) (DP:40)

¹H NMR (400 MHz, CDCl₃) (DP:40) δ =4.29-3.85(m, 82H), 3.49-3.25(m, 168H), 2.88-2.71(m, 40H), 2.43-2.17(m, 88H), 2.10-1.87(m, 88H), 1.87-1.68(m, 83H), 1.24-1.01(m, 252H).

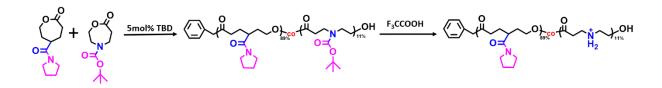
MALDI-tof-MS: PDECL had a precise structure with a benzyl group and an OH group at two terminals. For example, the observed value, m/z = 2262.1, agrees with the theory value of PNICL with degree of polymerization of 10 [108.1(M_{initiator}) + 213.1(M_{monomer}) ×10 + 23.0(M_{Na+}) = 2262.1].

Poly(5-(pyrrolidine-1-carbonyl)oxepan-2-one) (VPyCL) (DP:40)

¹H NMR (400 MHz, CDCl₃) *δ*=4.14-3.92(m, 69H), 3.54-3.36(m, 156H), 2.81-2.61(m, 39H), 2.49-2.16(m, 92H), 2.07-1.60(m, 349H).


MALDI-tof-MS: PVPyCL had a precise structure with a benzyl group and an OH group at two terminals. For example, the observed value, m/z = 2242.1, agrees with the theory value of PNICL with degree of polymerization of 10 [108.1(M_{initiator}) + 211.1(M_{monomer}) ×10 + 23.0(M_{Na+}) = 2242.1].

1.5 Kinetics of Polymerization


NICL (100 mg, 502 μ mol) was add in the a 10ml flame-dried Schlenk flask containing a magnetic stir bar and vacuumized 3h in the 50°C oil pot. Then benzyl alcohol solution (13.2 μ L, benzyl alcohol was dissolved in the methylbenzene with a 0.1028g/ul concentration) and dry CH₂Cl₂ (0.5mL) was added into the flash. Then TBD (3.4 mg, 25.1 μ mol, relative to the monomer molar mass) was added to initiate polymerization. The reaction mixture was allowed to stir continuously at room temperature in an argon protective atmosphere. An 50ul solution was taken out from flask at a predetermined time interval in a continuous argon condition. Sample was quenched by acetic acid for ¹H NMR spectroscopy analysis and GPC analysis. Residual solution would continue to react in an argon protective atmosphere until next sampling.

Other TBD-catalyzed ROP kinetic studies of DECL and VPyCL were carried out in a similar manner.

1.6 General procedure for co-polymerization

Scheme S5. Preparation of P(VPyCL_X-co-NICL_{1-X})₂₀

Scheme S6. Preparation of P(VPyCL_{89%}-co-PIL_{11%})₂₀

VPyCL (100mg, 502umol) and NICL (106mg, 502umol) were add into 10ml flame-dried Schlenk flask containing a magnetic stir bar and vacuumized 3h in the 50°C oil pot. Then benzyl alcohol solution (52.7uL, benzyl alcohol was dissolved in the methylbenzene with a 0.1028g/ul concentration) and dry CH₂Cl₂ (1.0mL) was added into the flash. To this solution, TBD (7.0mg, 50.3umol, relative to the monomer molar mass) was added to initiate polymerization. The reaction mixture was allowed to stir at room temperature. After reaching the predetermined time, about 40ul of acetic acid was added into the flash to quenched reaction. Crude products were precipitated in anhydrous ether third times and dried in vacuum to further characterize.

Other copolymers including $P(VPyCL_x-co-NICL_{1-x})_{20}$ and $P(VPyCL_{90\%}-co-Boc-NIPIL_{10\%})_{20}$ were carried out in a similar manner.

1.7 Deprotection of co-polymer

 $P(VPyCL_{90\%}$ -*co*-Boc-NIPIL_{10\%})₂₀ (100mg) was added into 10ml flame-dried Schlenk flask containing a magnetic stir bar. Then dry CH₂Cl₂ (1.0mL) was added into the flash to dissolved copolymer. In addition, trifluoroacetic acid (1ml) was added to remove the protecting group of copolymer. After stirring at room temperature for 1hour, solution was precipitated in anhydrous ether third times and dried in vacuum to further characterize.

1.8 Preparation of PNIPAM-NHS

Preparation of PNIPAM-NHS was divided into two steps. First step was the preparation of PNIPAM. NIPAM (500mg) was added into 10ml flame-dried Schlenk flask containing a magnetic stir bar. Then dry THF (1.0mL) was added into the flash to dissolved monomer. Then the RAFT chain transfer agent S-1-dodecyl-S'-(α', α'' -dimethyl- α''' -acetic acid) trithiocarbonate (DDAT) and initiator ANIBN were added into the flash. After the mixture was degassed by three freeze-evacuate-thaw cycles, the reaction mixture was allowed to stir at 70°C under argon atmosphere.

After stirring for 24 hours, solution was precipitated in anhydrous ether third times and precipitation was dried in vacuum to further characterize.

Second step was the preparation of PNIPAM-NHS. Prepared PNIPAM (100mg) was added into 10ml Schlenk flask containing a magnetic stir bar. Then dry CH_2Cl_2 (1.0 mL) was added into the flash to dissolved monomer. Then EDC (100mg) and NHS (100mg) was added into the flash. After the reaction mixture was stirred at room temperature under argon atmosphere for 12h, solution was precipitated in anhydrous ether third times and precipitation was dried in vacuum without further characterization.

1.9 Preparation of P(VPyCL89%-co-PIL11%)20-NHS

Preparation of P(VPyCL_{89%}-*co*- PIL_{11%})₂₀-NHS was divided into two steps. First step was the preparation of P(VPyCL_{89%}-*co*- Boc-NIPIL_{11%})₂₀-COOH. Dry P(VPyCL_{89%}-*co*- Boc-NIPIL_{11%})₂₀ (370mg), succinic anhydride (10mg), pyridine (0.1ml) and chloroform (5ml) were added into 10ml Schlenk flask containing a magnetic stir bar. After stirred at 60°C under argon atmosphere for 12h, solution was precipitated in anhydrous ether third times and was dried in vacuum. Dry precipitation P(VPyCL_{89%}-*co*- Boc-NIPIL_{11%})₂₀ was deprotected according to the procedure in S1.7 to gain P(VPyCL_{89%}-*co*-PIL_{11%})₂₀-COOH. The deprotected crude product was precipitated in anhydrous ether third times and precipitation was dried in vacuum without further characterization.

The preparation of $P(VPyCL_{89\%}$ -*co*-PIL_{11\%})₂₀-NHS was prepared according to the prepared procedure of PNIPAM-NHS. Result product was dried in vacuum without further characterization.

1.10 Thermal Properties of polymers

To evaluate thermal properties of those poly(γ -amide- ε -caprolactone)s, differential scanning calorimetry (DSC) and the thermogravimetric analysis (TGA) were respectively employed to measure the glass transition temperature (T_g) and decomposition temperature (T_d) of poly(γ -amide- ε -caprolactone)s (Figure S34-S35). T_g of those polymers was higher than that of PCL owning to the destroy of steric regularity from the introduction of amide groups into PCL. However, the observed T_g among different poly(γ -amide- ε -caprolactone)s from DSC curve exhibited difference but was not regular (Figure S34). T_d of those polymers measured ranged from 300°C to 345°C, lower than the reported PCL value (350°C) (Figure S35), suggesting that the introduce of amide groups in the side chain of PCL would lower thermal stabilities. It was observed that T_d of PDECL₁₀ and PVPyCL₁₀ at near 350°C was higher than that of PNICL₁₀ at 300°C. It was likely that heat resistance of $PNICL_{10}$, relative to $PDECL_{10}$ and $PVPyCL_{10}$, showed inferior owing to the exist of the secondary amide substituent.

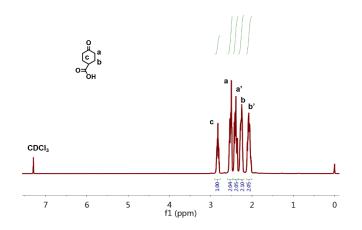


Figure S1. ¹H NMR spectrum of 4-oxocyclohexane-1-carboxylic acid

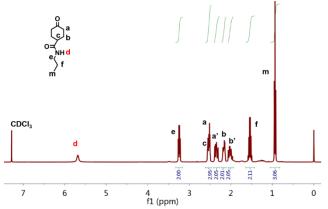


Figure S2. ¹H NMR spectrum of 4-oxo-*N*-propylcyclohexane-1-carboxamide

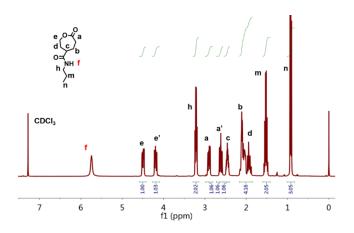


Figure S3. ¹H NMR spectrum of 7-oxo-*N*-propyloxepane-4-carboxamide (NNCL)

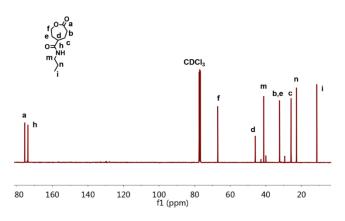


Figure S4. ¹³C NMR spectrum of 7-oxo-*N*-propyloxepane-4-carboxamide (NNCL)

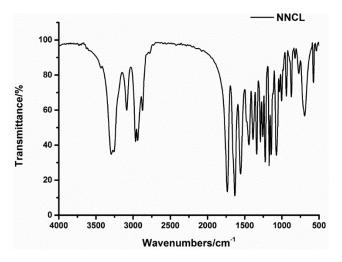


Figure S5. FT-IR spectrum of 7-oxo-*N*-propyloxepane-4-carboxamide (NNCL)

Figure S6. ¹H NMR spectrum of 4-oxo-*N*-propylcyclohexane-1-carboxamide

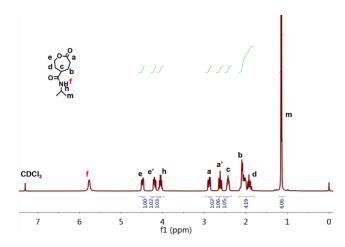


Figure S7. ¹H NMR spectrum of *N*-isopropyl-7-oxooxepane-4-carboxamide (NICL)

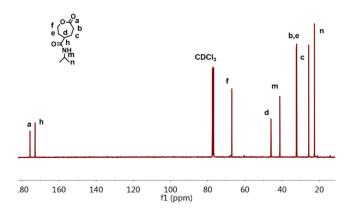


Figure S8. ¹³C NMR spectrum of *N*-isopropyl-7-oxooxepane-4-carboxamide (NICL)

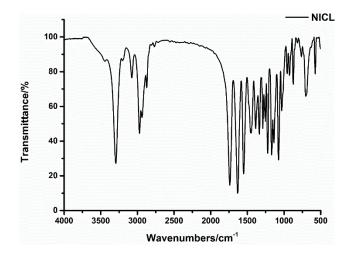


Figure S9. FT-IR spectrum of *N*-isopropyl-7-oxooxepane-4-carboxamide (NICL)

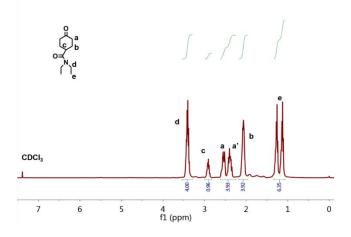


Figure S10. ¹H NMR spectrum of *N*-cyclopropyl-4-oxocyclohexane-1-carboxamide

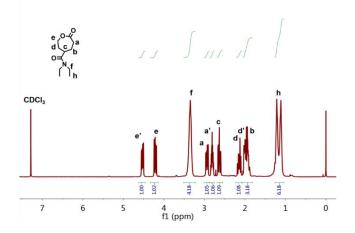


Figure S11. ¹H NMR spectrum of *N*, *N*-diethyl-7-oxooxepane-4-carboxamide (DECL)

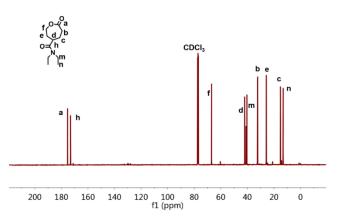


Figure S12. ¹³C NMR spectrum of *N*, *N*-diethyl-7-oxooxepane-4-carboxamide (DECL)

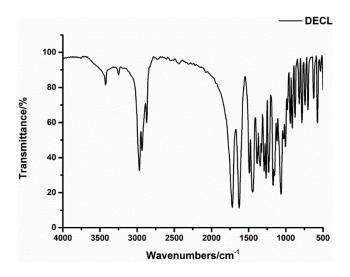


Figure S13. FT-IR spectrum of *N*, *N*-diethyl-7-oxooxepane-4-carboxamide (DECL)

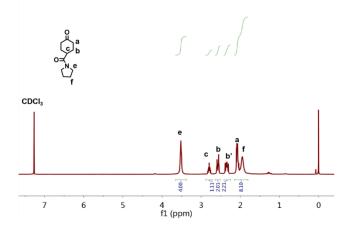


Figure S14. ¹H NMR spectrum of 4-(pyrrolidine-1-carbonyl) cyclohexan-1-one

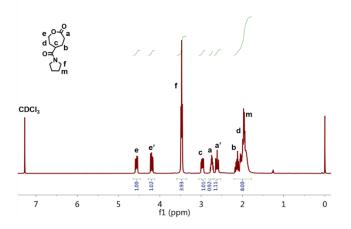


Figure S15. ¹H NMR spectrum of 5-(pyrrolidine-1-carbonyl)oxepan-2-one(VPyCL)

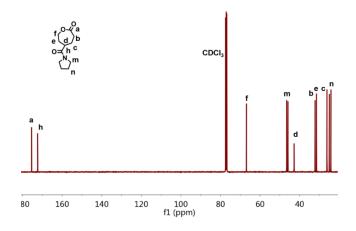


Figure S16. ¹³C NMR spectrum of 5-(pyrrolidine-1-carbonyl)oxepan-2-one(VPyCL)

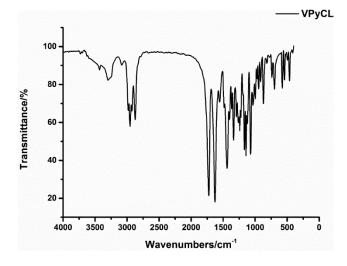


Figure S17. FT-IR spectrum of 5-(pyrrolidine-1-carbonyl)oxepan-2-one(VPyCL)

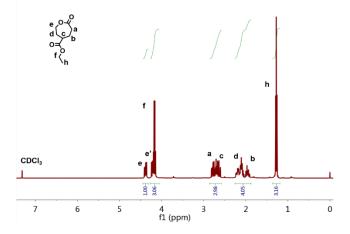


Figure S18. ¹H NMR spectrum of ethyl 7-oxooxepane-4-carboxylate(EMCL)

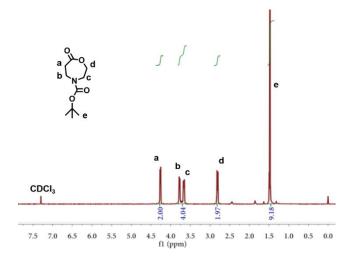
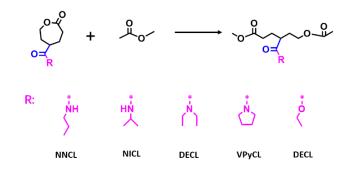


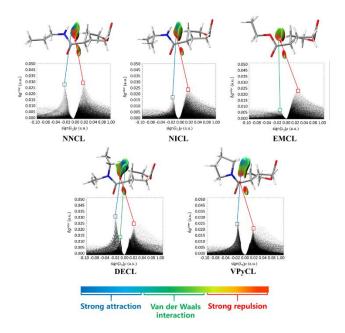
Figure S19. ¹H NMR spectrum of tert-butyl 7-oxo-1,4-oxazepane-4-carboxylate(Boc-NIPIL)

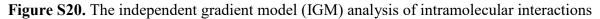

2 Computer simulation

All the geometries were fully optimized by means of the hybrid M06- $2x^1$ functional with the triple-zeta, polarized and diffuse 6-311+G(d,p) basis set.² No symmetry or geometry constraint was imposed during the optimizations. All the optimized geometries were corroborated to be factual minima on the potential energy surface via frequency calculations at the same theoretical level. All of these calculations were carried out with the Gaussian 09 suite of programs. All calculations were performed with the SMD solvent model in dichloromethane and the enthalpies were obtained from the frequency calculations at 298.15K and 1 atm. The independent gradient

model (IGM)³ analysis was performed with the Multiwfn⁴ program and visualized by using the VMD package⁵.

2.1 The enthalpies of ring opening

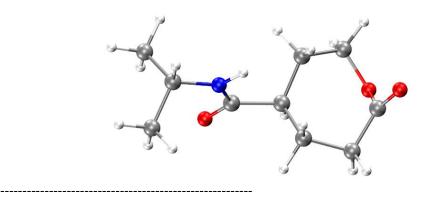

The enthalpies of ring opening were evaluated as ΔHro ($\Delta Hro = H_{ring} - H_{C3H6O2} - H_{chain}$), where H_{ring} , H_{C3H6O2} and H_{chain} are the thermal enthalpies of optimized γ -substituted ε caprolactones, methyl acetate, and methyl acetate-(γ -substituted ε -caprolactone) adduct.⁶



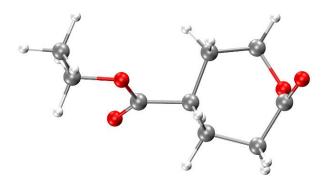
Scheme S7. A model of ring-opening reaction between functional ε -caprolactone and methyl acetate

2.2 The independent gradient model (IGM) analysis

The independent gradient model (IGM) was developed by Lefebvre and coworkers³ to identify and isolate the interaction between user-defined fragments. They used $\delta_g = |\rho IGM| - |\rho|$ to describe the interactions. In this work, we applied the δg analysis to 5 different substituted monomers. Figure S20 shows the 3D real space RGB-colored function isosurfaces and 2D scatter plot of δg inter *vs* sign(λ_2) ρ , where (λ_2) ρ is the second eigenvalue of the electron-density Hessian matrix. Blue indicates strong attractive interaction, red the steric repulsion, and green the van der Waals (vdW) interaction.


between substituted group and ring.

Entry	Monomer	Attraction/a.u ^a	Repellant/a.u ^a	$\Delta Hro^{a}/kcal/mol^{b}$
1	NNCL	0.030	0.033	-16.0
2	NICL	0.020	0.025	-17.6
3	DECL	0.035	0.025	-16.6
4	VPyCL	0.027	0.023	-17.4
5	EMCL	0.010	0.023	-14.7


Table S1 The Result of Computer Simulation

^{*a*}Attraction and repellant were calculated through independent gradient model (IGM) analysis from Figure S20. ^{*b*} Δ *Hro* was calculated through a model of ring opening reaction in Figure S20.

NICL

Center	Atomic	Coordinates (Angstroms)			
Number	Туре	-	X Y		
1		-0.388960			
2	С	-0.883294	-1.320254	0.141400	
3	С	-2.389532	-1.593912	0.354613	
4	С	-0.918972	1.219309	-0.328490	
5	С	-3.135747	-0.435038	-0.233065	
6	С	-2.292608	1.728357	0.106018	
7	Н	-0.691213	0.265278	1.608655	
8	Н	-0.651895	-1.459915	-0.919683	
9	Н	-2.608927	-1.656365	1.421722	
10	Н	-0.961072	0.869463	-1.366098	
11	Н	-2.809917	2.232611	-0.713015	
12	Н	-0.328340	-2.080920	0.696529	
13	Н	-2.673549	-2.521100	-0.141740	
14	Н	-0.232346	2.069970	-0.309531	
15	Н	-2.209083	2.410165	0.951351	
16	0	-3.622388	-0.380001	-1.328736	
17	0	-3.094182	0.638561	0.603581	
18	С	1.136817	0.059276	0.608504	
19	0	1.751549	0.074024	1.668886	
20	Ν	1.743894	0.001186	-0.597254	
21	Н	1.157343	-0.007048	-1.419896	
22	С	3.197271	-0.048635	-0.808099	
23	Н	3.315756	-0.092459	-1.893186	
24	С	3.811567	-1.311397	-0.207695	
25	Н	3.725728	-1.301704	0.879809	
26	Н	3.313882	-2.204704	-0.592476	
27	Н	4.870354	-1.366890	-0.472488	
28	С	3.883217	1.218177	-0.301321	
29	Н	4.942383	1.195873	-0.569604	
30	Н	3.433561	2.107091	-0.750073	
31	Н	3.801694	1.292798	0.784197	
Zero-point correction= 0.269303 (Hartree/Particle)					
Zero-point correction=0.269303 (Hartree/Particle)Thermal correction to Energy=0.283870					
Thermal correction to Enthalpy= 0.284815					
Thermal correction to Entimapy- 0.224013 Thermal correction to Gibbs Free Energy= 0.227042					
Sum of electronic and zero-point Energies= -671.409416					
Sum of electronic and thermal Energies= -671.394848					
		and thermal I	-		
		ma mormar L	minupico –	0/1.5/5/04	

Center	Atomic	Coordinates (Angstroms)		
Number	Туре		X Y	Ζ
	С	0.116292	-0.671368	0.313675
2	C C	0.528621	0.494766	
2	C C	2.045269	0.627187	
4	C C	0.534197	-0.455195	
5	C C	2.734419	0.582436	0.172878
6	C C	1.956999	-0.936533	
7	Н	0.539571	-1.607283	
8	H	0.159123	1.426902	0.807255
9	H	2.392598	-0.209773	
10	H	0.431959	0.605992	-1.405759
10	H	2.377786	-0.450090	-2.322105
11	H		0.369606	
12	H	2.254241		
13	H	-0.136570	-0.999911	-1.830421
14	п Н	-0.130370	-2.016726	-1.830421
15	п О	3.103557		-0.474063
10	0	2.796441		
	C C			-0.292714 0.403740
18 19	0	-1.384293 -1.949101	-0.833230 -1.785497	0.403740
20	0	-2.029395	0.217006	-0.109989
21	С	-3.471186	0.172094	-0.080724
22	H	-3.795624	0.070195	0.956908
23	H	-3.801406	-0.709552	
24	C	-3.975407	1.450085	-0.705831
25	H	-5.067291	1.446182	-0.708588
26	H	-3.634903	2.319799	
27	Н	-3.627610	1.540992	-1.736713

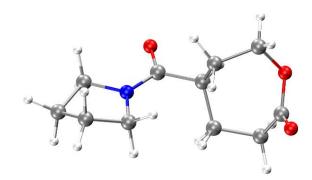
Zero-point correction=

0.228938 (Hartree/Particle) 0.241958

Thermal correction to Energy=

Thermal correction to Enthalpy=	0.242902
Thermal correction to Gibbs Free Energy=	0.187946
Sum of electronic and zero-point Energies=	-652.009569
Sum of electronic and thermal Energies=	-651.996548
Sum of electronic and thermal Enthalpies=	-651.995604
Sum of electronic and thermal Free Energie	es= -652.050560

DECL



Center	Atomic	Coordinates (Angstroms)			
Number	Туре	Х	Y	Z	
1	С	-0.431900	-0.655405	0.125867	
2	С	-1.106774	-0.729844	-1.264586	
3	С	-2.640368	-0.932536	-1.216387	
4	С	-0.778702	0.624636	0.925126	
5	С	-3.197669	0.067234	-0.245883	
6	С	-2.038073	0.435556	1.769067	
7	Н	-0.797278	-1.509595	0.702093	
8	Н	-0.900823	0.180073	-1.834346	
9	Н	-2.869297	-1.938065	-0.859472	
10	Н	-0.928441	1.472763	0.251350	
11	Н	-2.470743	1.395050	2.060964	
12	Н	-0.680949	-1.566947	-1.823196	
13	Н	-3.069523	-0.779798	-2.205995	
14	Н	0.040274	0.893676	1.597602	
15	Н	-1.832715	-0.153913	2.662069	
16	Ο	-3.662914	1.139804	-0.516519	
17	Ο	-3.008546	-0.344732	1.039373	
18	С	1.065479	-0.968070	0.023678	
19	0	1.450436	-2.081847	0.379428	
20	Ν	1.947438	-0.053670	-0.451288	
21	С	4.011120	-0.384021	0.908396	
22	Н	5.066140	-0.660314	0.836528	

23	Н	3.946954	0.618822	1.336385
24	Н	3.518479	-1.085279	1.583496
25	С	1.625415	1.266622	-0.988322
26	Η	2.043320	1.325032	-1.998733
27	Η	0.550493	1.362075	-1.090592
28	С	2.173108	2.408013	-0.139806
29	Η	1.876406	3.364618	-0.576729
30	Η	1.784967	2.357223	0.880131
31	Η	3.264377	2.383006	-0.096673
32	С	3.364720	-0.432872	-0.471288
33	Η	3.869112	0.254675	-1.153111
34	Η	3.447249	-1.439090	-0.886193

Zero-point correction=	0.298970 (Hartree/Particle)
Thermal correction to Energy=	0.314359
Thermal correction to Enthalpy=	0.315303
Thermal correction to Gibbs Free Ener	gy= 0.256692
Sum of electronic and zero-point Energy	gies= -710.670308
Sum of electronic and thermal Energie	-710.654919
Sum of electronic and thermal Enthalp	ies= -710.653975
Sum of electronic and thermal Free En	ergies= -710.712586

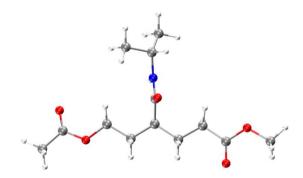
VPyCL

Center Number	Atomic Type	Co X	oordinates (A Y	Angstroms) Z
1	С	-0.529083	0.700134	0.229446
2	С	-0.876286	-0.394597	1.261699
3	С	-2.385893	-0.500384	1.581625
4	С	-0.980150	0.343364	-1.210408
5	С	-3.111584	-0.591522	0.271287
6	С	-2.410989	0.804362	-1.489043
7	Н	-1.052399	1.613891	0.523466

8	Н	-0.539833	-1.368774	0.900975	
9	Н		0.393405	2.112710	
10	Н		-0.737190		
11	Н	-2.849528			
12	Н	-0.351136	-0.192081		
13	Н	-2.580643	-1.388017	2.182449	
14	Н	-0.326738	0.813191		
15	Н	-2.448776	1.873958		
16	Ο	-3.468639			
17	Ο	-3.225931	0.635288		
18	С	0.937488	1.126470	0.281133	
19	Ο	1.211745	2.314831	0.455706	
20	С	1.817637	-1.222661	-0.163595	
21	С	4.118538	-0.638210	0.036423	
22	С	3.182187	-1.538783	-0.771935	
23	Н	0.992982	-1.433683	-0.841490	
24	Н	1.672699	-1.791171	0.760714	
25	Н	5.086552	-0.480892	-0.439061	
26	Н	4.286681	-1.073746	1.025343	
27	Н	3.193361	-1.244600	-1.825393	
28	Н	3.427391	-2.598610	-0.701671	
29	Ν	1.920115	0.214793	0.130568	
30	С	3.322942	0.660499	0.165358	
31	Н	3.524844	1.204408	1.089198	
32	Н	3.509339	1.339214	-0.672752	
Zero-po	oint corre		0.27	8608 (Hartree/Particle)	
-).292344	
				0.293288	
				0.237662	
Sum of electronic and zero-point Energies= -709.492889					
		ic and thermal E	-	-709.479153	
		ic and thermal E	•	-709.478209	
	1				

Ring opened NNCL

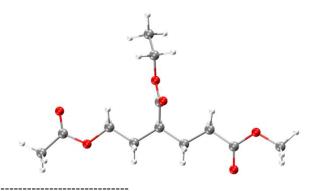
Sum of electronic and thermal Free Energies=


-709.533835

Center	Atomic	c Co	ordinates (A	Angstroms)
Number	Туре	× X	Y	Ζ
	С	6.514454	-0.426702	-0.074363
2	Н	6.734720	-1.361509	-0.591461
3	Н	7.166906	0.365712	-0.433297
4	Н	6.641392	-0.563463	1.000171
5	0	5.180156	0.004521	-0.368879
6	C	4.198324	-0.827699	-0.002823
7	0	4.402702	-1.880688	0.548032
8	C	2.845744	-0.280409	-0.374409
9	Н	2.777981	0.733958	0.032124
10	Н	2.825189	-0.176709	-1.465079
11	C	1.701535	-1.157296	0.115500
12	Н	1.830800	-2.175522	-0.259925
13	Н	1.716353	-1.209573	1.207400
14	С	0.336017	-0.635952	-0.340075
15	Н	0.316204	-0.599298	-1.435527
16	С	-0.788075	-1.556169	0.149957
17	Н	-0.612695	-2.565844	-0.231744
18	Н	-0.765751	-1.599594	1.242733
19	С	-2.149163	-1.076116	-0.310577
20	Н	-2.203433	-1.010931	-1.401167
21	Н	-2.396756	-0.095353	0.105353
22	0	-3.120656	-2.030110	0.149915
23	С	-4.400023	-1.772462	-0.150438
24	С	-5.317017	-2.822079	0.400957
25	Н	-6.344092	-2.594189	0.125773
26	Н	-5.030556	-3.800397	0.010778
27	Н	-5.218957	-2.853418	1.487863
28	0	-4.740939	-0.805444	-0.786717
29	С	0.109102	0.769669	0.208648
30	0	0.147755	0.998722	1.412333
31	Ν	-0.132807	1.730381	-0.708647
32	Н	-0.210479	1.459910	-1.678509

33	С	-0.462827	3.097902	-0.334169
34	Н	-0.207928	3.744430	-1.176751
35	Н	0.171241	3.378404	0.510126
36	С	-1.933373	3.267675	0.040819
37	Н	-2.553731	2.966246	-0.809496
38	Н	-2.162784	2.589387	0.867974
39	С	-2.243400	4.707198	0.437292
40	Н	-2.017924	5.396358	-0.381785
41	Н	-3.297416	4.827899	0.695773
42	Н	-1.648566	5.009467	1.303815

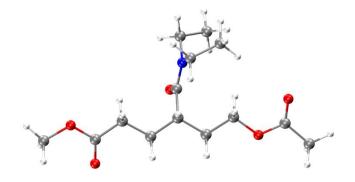
Zero-point correction=	0.361409 (Hartree/Particle)
Thermal correction to Energy=	0.384168
Thermal correction to Enthalpy=	0.385112
Thermal correction to Gibbs Free Ener	rgy= 0.304053
Sum of electronic and zero-point Energy	gies= -939.705802
Sum of electronic and thermal Energie	es= -939.683042
Sum of electronic and thermal Enthalp	ies= -939.682098
Sum of electronic and thermal Free En	ergies= -939.763157


Ring opened NICL

Center	Atomi	c Ca	oordinates (A	Angstroms)
Number	Тур	e X	Y	Ζ
	C	6 350386	-0.861436	-0.069547
2	Н		-1.676360	-0.774649
3	Н	7.062372	-0.058636	-0.244972
4	Н	6.444598	-1.234037	0.950931
5	0	5.054546	-0.284766	-0.273135
6	С	4.011675	-1.103274	-0.090843
7	0	4.133939	-2.259206	0.229825
8	С	2.705992	-0.398590	-0.348178
9	Н	2.727268	0.550250	0.196402

10	Н	2.683642	-0.143749	-1.414082		
11	С	1.498383	-1.241469	0.039580		
12	Н	1.538945	-2.203266	-0.477466		
13	Н	1.522305	-1.448177	1.112974		
14	С	0.174373	-0.554976	-0.305097		
15	Н	0.139627	-0.368743	-1.384563		
16	С	-1.013116	-1.441947	0.086925		
17	Н	-0.913938	-2.408503	-0.415122		
18	Н	-0.988506	-1.619834	1.165895		
19	С	-2.338840	-0.815789	-0.294173		
20	Н	-2.391251	-0.611267	-1.367450		
21	Н	-2.520820	0.119391	0.243171		
22	Ο	-3.370592	-1.754123	0.054099		
23	С	-4.629833	-1.386018	-0.214675		
24	С	-5.611587	-2.439674	0.200930		
25	Н	-6.622319	-2.112923	-0.031716		
26	Н	-5.388882	-3.371632	-0.322142		
27	Н	-5.514316	-2.625350	1.272249		
28	Ο	-4.907466	-0.330721	-0.729480		
29	С	0.072839	0.777404	0.431163		
30	Ο	0.185485	0.843000	1.650707		
31	Ν	-0.147535	1.861758	-0.340376		
32	Н	-0.276472	1.728463	-1.334593		
33	С	-0.346855	3.202472	0.211209		
34	Н	0.389444	3.324346	1.009511		
35	С	-0.087066	4.225756	-0.885135		
36	Н	-0.803064	4.098574	-1.703448		
37	Η	-0.203500	5.236320	-0.489239		
38	Н	0.923814	4.124810	-1.286747		
39	С	-1.747982	3.340933	0.801159		
40	Н	-1.875828	4.330529	1.247281		
41	Н	-2.502170	3.213998	0.018567		
42	Н	-1.914054	2.589655	1.575808		
Zero-point correction= 0.360763 (Hartree/Particle)						
		tion to Energ		0.383526		
Thermal correction to Enthalpy= 0.384470						
Thermal correction to Gibbs Free Energy= 0.304048						
		ic and zero-p	-			
	Sum of electronic and thermal Energies= -939.686849					
		ic and therm	-			
Sum of electronic and thermal Free Energies= -939.766327						

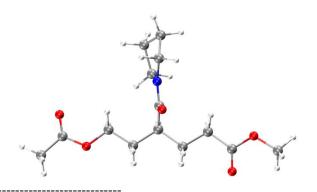
Ring opened EMCL



Center	Atomic	e Co	oordinates (A	angstroms)
Number	Туре	e X	Y	Ζ
1	с	6.292044	-0.744815	-0.141251
2	Н	6.431415	-1.543325	-0.870861
3	Н	7.015326	0.049475	-0.308769
4	Н	6.398120	-1.146367	0.866997
5	0	5.003423	-0.139460	-0.304849
6	C	3.949813	-0.944462	-0.128555
7	0	4.055223	-2.110065	0.161414
8	C	2.652764	-0.212343	-0.350808
9	Н	2.692236	0.716680	0.226761
10	Н	2.624752	0.080385	-1.406474
11	С	1.436737	-1.053203	0.015031
12	Н	1.455255	-1.990782	-0.545256
13	Н	1.466849	-1.309473	1.077643
14	С	0.121630	-0.333548	-0.291907
15	Н	0.085351	-0.066397	-1.351848
16	С	-1.081277	-1.224161	0.049771
17	Н	-1.001648	-2.151536	-0.523535
18	Н	-1.049796	-1.481938	1.112719
19	С	-2.400434	-0.550061	-0.270011
20	Н	-2.464332	-0.272631	-1.325767
21	Н	-2.559423	0.350146	0.331082
22	Ο	-3.441083	-1.493432	0.032804
23	С	-4.700067	-1.074020	-0.151545
24	С	-5.692511	-2.146139	0.183068
25	Н	-6.701700	-1.748842	0.104328
26	Н	-5.566840	-2.978746	-0.512458
27	Н	-5.509791	-2.520287	1.191529
28	Ο	-4.968870	0.033364	-0.546916
29	С	0.024987	0.946434	0.515796
30	0	0.184046	1.007987	1.711144
31	0	-0.284034	2.002656	-0.238381
32	С	-0.461223	3.259318	0.450467

33	Η	-1.243796	3.134137	1.201930
34	Η	0.471176	3.509503	0.960785
35	С	-0.833811	4.291902	-0.585163
36	Η	-1.760966	4.015933	-1.091314
37	Η	-0.980645	5.258063	-0.098062
38	Η	-0.043087	4.398191	-1.330513

0.320791 (Hartree/Particle) Zero-point correction= Thermal correction to Energy= 0.341842 Thermal correction to Enthalpy= 0.342786 Thermal correction to Gibbs Free Energy= 0.266462 Sum of electronic and zero-point Energies= -920.304958 Sum of electronic and thermal Energies= -920.283908 Sum of electronic and thermal Enthalpies= -920.282963 Sum of electronic and thermal Free Energies= -920.359287


Ring opened DECL

Center	Aton	nic C	oordinates (A	Angstroms)
Number	Ty	pe X	Y	Ζ
	0	-6.529620	-0.585574	0.216445
2	0	-6.696228	-1.511631	0.768022
3	0	-7.198315	0.192761	0.576320
4	0	-6.690138	-0.759494	-0.848246
5	0	-5.202965	-0.096461	0.447084
6	0	-4.203708	-0.905693	0.074834
7	0	-4.388580	-1.992042	-0.415027
8	0	-2.860430	-0.282668	0.346124
9	0	-2.832441	0.671554	-0.190686
10	0	-2.818853	-0.039741	1.413387
11	0	-1.700337	-1.178870	-0.064776
12	0	-1.774446	-2.138112	0.454407
13	0	-1.751016	-1.380821	-1.136633
14	0	-0.344216	-0.550041	0.268399

15	0	-0.306314	-0.394040	1.346085		
16	0	0.797360	-1.495270	-0.133506		
17	0	0.665040	-2.448723	0.385526		
18	0	0.742957	-1.688092	-1.208995		
19	0	2.157263	-0.923812	0.209775		
20	0	2.242637	-0.702320	1.278112		
21	0	2.368276	-0.007801	-0.349340		
22	0	3.140762	-1.911636	-0.141118		
23	0	4.419879	-1.579248	0.074404		
24	0	5.352148	-2.676733	-0.342052		
25	0	6.379452	-2.383810	-0.138636		
26	0	5.107057	-3.590631	0.202232		
27	0	5.223632	-2.876600	-1.407621		
28	0	4.749230	-0.518259	0.545688		
29	0	-0.192859	0.762908	-0.504166		
30	0	-0.481502	0.770240	-1.700873		
31	0	0.263876	1.885837	0.105484		
32	0	1.585024	3.102188	-1.628600		
33	0	1.603277	4.020001	-2.221970		
34	0	2.508075	3.051473	-1.047646		
35	0	1.553282	2.252862	-2.312712		
36	0	0.359211	3.095175	-0.721347		
37	0	0.378512	3.948964	-0.041064		
38	0	-0.547425	3.166178	-1.324444		
39	0	0.652584	2.037018	1.509920		
40	0	-0.012712	2.778649	1.965105		
41	0	0.496011	1.100019	2.034542		
42	0	2.102972	2.474982	1.685987		
43	0	2.283142	3.459945	1.249964		
44	0	2.330839	2.536944	2.752892		
45	0	2.791388	1.760701	1.228340		
Zero-point correction= 0.390001 (Hartree/Particle)						
Thermal correction to Energy= 0.413715						
Thermal correction to Enthalpy= 0.414659						
Thermal correction to Gibbs Free Energy= 0.333214						
Sum of electronic and zero-point Energies= -978.969020						
Sum of e	Sum of electronic and thermal Energies= -978.945306					
		ic and therm	-			
		ic and therm	-			
<u>-</u>						

Ring opened VPyCL

Center	Atomic	c Co	ordinates (A	angstroms)
Number	Туре	e X	Y	Ζ
1	С	6.296222	-1.055846	-0.396577
2	Н	6.337697	-1.941847	-1.031056
3	Н	7.003742	-0.307927	-0.746540
4	Н	6.517354	-1.332802	0.634976
5	Ο	5.004936	-0.440554	-0.482547
6	С	3.965297	-1.202557	-0.121825
7	Ο	4.087205	-2.341259	0.255240
8	С	2.663684	-0.456978	-0.250397
9	Н	2.715373	0.400151	0.430666
10	Н	2.615736	-0.045355	-1.263824
11	С	1.453939	-1.331961	0.048804
12	Н	1.468093	-2.210900	-0.601198
13	Н	1.498787	-1.688757	1.080475
14	С	0.134023	-0.585470	-0.167886
15	Н	0.097387	-0.243598	-1.205425
16	С	-1.058523	-1.512876	0.097615
17	Н	-0.946375	-2.419454	-0.503802
18	Н	-1.055776	-1.806547	1.151374
19	С	-2.377477	-0.850968	-0.243851
20	Н	-2.431144	-0.592417	-1.304787
21	Н	-2.544927	0.058426	0.342009
22	Ο	-3.421659	-1.791834	0.058267
23	С	-4.673878	-1.403535	-0.213962
24	С	-5.669816	-2.463778	0.147402
25	Н	-6.673344	-2.124594	-0.098158
26	Н	-5.439498	-3.381490	-0.396982
27	Н	-5.598126	-2.680478	1.214953
28	Ο	-4.936260	-0.326792	-0.691340
29	С	0.069277	0.606841	0.785452
30	0	0.231161	0.437704	1.994215
31	С	-0.461242	2.181563	-1.126027
32	С	-0.212409	4.178465	0.173545

33	С	-0.997246	3.609144	-1.010151
34	Η	-1.195378	1.498703	-1.553970
35	Η	0.448978	2.150524	-1.733859
36	Η	-0.670165	5.066932	0.608196
37	Η	0.804853	4.430660	-0.138814
38	Η	-2.063737	3.580850	-0.769945
39	Η	-0.864153	4.171462	-1.934276
40	Ν	-0.155929	1.831134	0.272514
41	С	-0.178640	3.007431	1.153333
42	Η	0.696598	3.004391	1.803833
43	Η	-1.072790	2.981156	1.785028

Zero-point correction=	0.369901 (Hartree/Particle)
Thermal correction to Energy=	0.391913
Thermal correction to Enthalpy=	0.392857
Thermal correction to Gibbs Free Ener	-gy= 0.315026
Sum of electronic and zero-point Energy	gies= -977.792852
Sum of electronic and thermal Energie	s= -977.770840
Sum of electronic and thermal Enthalp	ies= -977.769895
Sum of electronic and thermal Free En	ergies= -977.847726

Methyl acetate

		j	
~	0		6

Center	Atomi	c Co	Coordinates (Angstroms)			
Number	Туре	e X	Y	Ζ		
1	С	1.866895	-0.161842	0.000129		
2	Н	2.541379	-1.014646	0.000270		
3	Н	2.025507	0.446057	-0.891175		
4	Н	2.025414	0.446279	0.891300		
5	0	0.544351	-0.712263	0.000129		
6	С	-0.461452	0.171100	-0.000053		
7	0	-0.283171	1.364221	-0.000209		
8	С	-1.794989	-0.513011	-0.000027		
9	Н	-1.877616	-1.150450	-0.88224		
10	Н	-1.877739	-1.150130	0.88241		
11	Н	-2.589113	0.229737	-0.00021		

Zero-point correction=	0.090311 (Hartree/Particle)
Thermal correction to Energy=	0.096468
Thermal correction to Enthalpy=	0.097412
Thermal correction to Gibbs Free Ener	gy= 0.059269
Sum of electronic and zero-point Energy	gies= -268.271015
Sum of electronic and thermal Energie	-268.264858
Sum of electronic and thermal Enthalp	ies= -268.263913
Sum of electronic and thermal Free En	ergies= -268.302057

Entry	Monomer	Catalyst ^b	[M] ₀ /[I] ₀	Time/h	Reaction temperature/°C	Conversion/% ^c	<mark>M</mark> n/Da ^c	<mark>M</mark> n/Da ^d	\overline{D}^{d}
1	NNCL	Sn(Oct) ₂	40	24	130	30	2500	3400	e
2	NNCL	DBU/TU	40	48	25	9	700	_	—
3	NICL	Sn(Oct) ₂	40	24	165	49	5200	2400	e
4	NICL	DBU/TU	40	48	25	17	1500	—	—
5	DECL	Sn(Oct) ₂	40	24	130	20	1800	2200	e
6	DECL	DBU/TU	40	48	25	15	1400	_	—
7	VPyCL	Sn(Oct) ₂	40	24	130	51	4400	1800	e
8	VPyCL	DBU/TU	40	48	25	16	1500	—	—

Table S2. Results for ROP of γ -amide- ε -caprolactones^{*a*}

^{*a*}All reactions used benzyl alcohol (BnOH) as the initiator. ^{*b*}Sn(Oct)₂:5wt%(relative to the monomer weight), DBU/TU:10mol% (relative to the monomer mole mass). ^{*c*}Conversion and number average molecular weight (M_n)were calculated by ¹H NMR. ^{*d*}M_n and dispersity (D) were measured by GPC in DMF using polymethyl methacrylate (PMMA) standards as calibration. ^{*e*}The GPC curves showed multiple peaks.

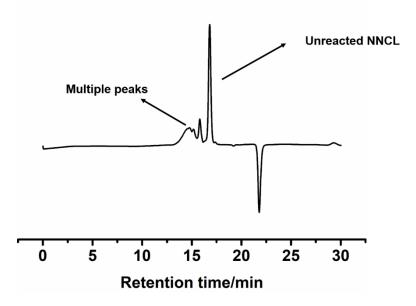
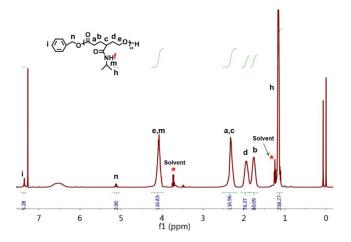
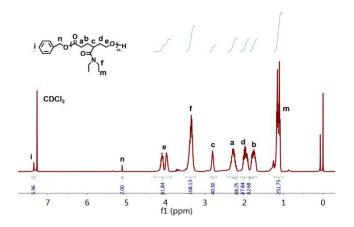




Figure S21. GPC curve of crude PNNCL₄₀ after reaction for 3.5h.

Figure S22. ¹H NMR spectrum of poly(*N*-isopropyl-4-oxocyclohexane-1-carboxamide)₄₀ (PNICL₄₀)

Figure S23. ¹H NMR spectrum of poly(*N*, *N*-diethyl-7-oxooxepane-4-carboxamide)₄₀ (PDECL)₄₀

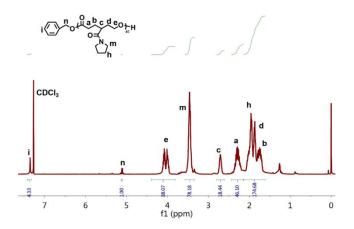


Figure S24. ¹H NMR spectrum of poly(5-(pyrrolidine-1-carbonyl)oxepan-2-one)₄₀ (PVPyCL)₄₀

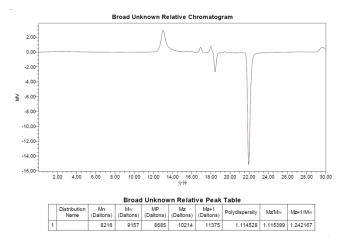


Figure S25. GPC curve of crude PNICL₄₀. *M*_n=8216, *Đ*=1.14528

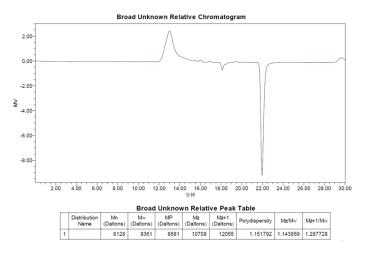


Figure S26. GPC curve of crude PDECL₄₀. M_n =8128, D=1.1517

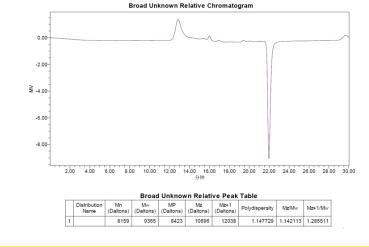


Figure S27. GPC curve of crude PVPyCL₄₀. M_n =8159, D =1.1477

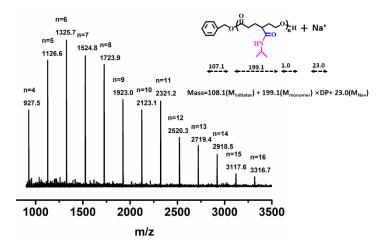


Figure S28. MALDI-tof-MS of PNICL₁₀ initiated by BnOH.

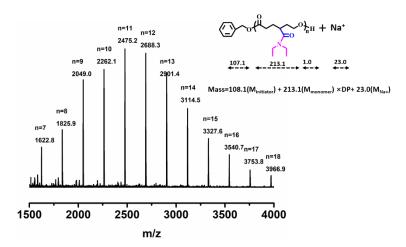


Figure S29. MALDI-tof-MS of PDECL₁₀ initiated by BnOH.

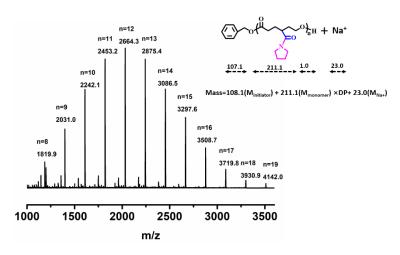
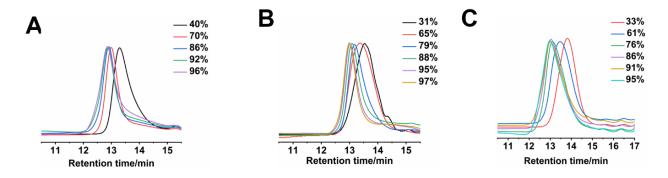



Figure S30. MALDI-tof-MS of PVPyCL₁₀ initiated by BnOH

Figure S31. GPC curve of (A) PNICL₄₀, (B) PDECL₄₀ and (C) PVPyCL₄₀ at different monomer conversion

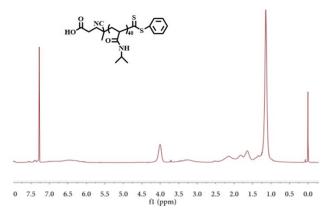


Figure S32. ¹H NMR spectrum of PNIPAM₄₀-COOH

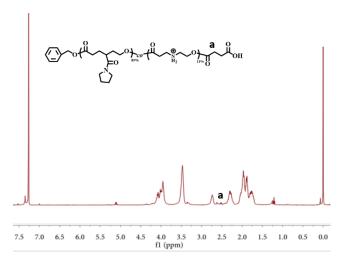


Figure S33. ¹H NMR spectrum of P(VPyCL_{89%}-co-PIL_{89%})₂₀-COOH

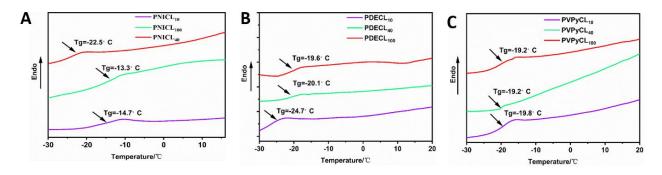


Figure S34. DSC of PNICL, PDECL and PVPyCL

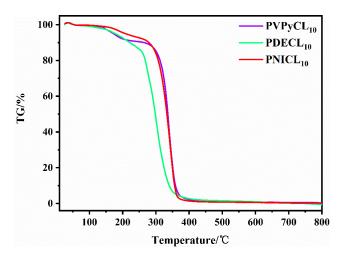


Figure S35. TGA of PNICL10, PDECL10, PVPyCL10

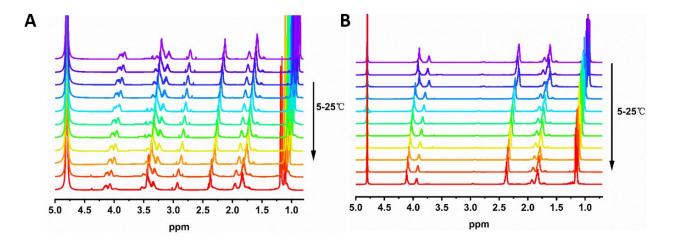


Figure S36. Variable temperature ¹H NMR of (A) PNICL₁₀ and (B) PDECL₁₀ in D₂O, concentration=5wt%

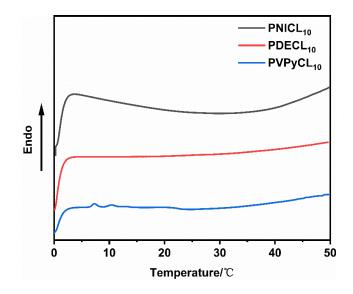
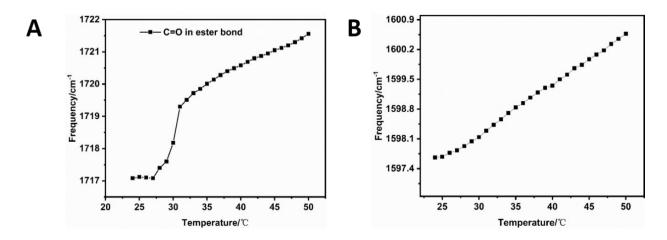
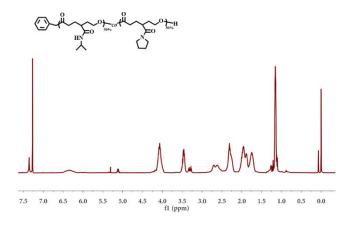




Figure S37. DSC of PNICL₁₀, PDECL₁₀, PVPyCL₁₀ in D₂O, concentration=5wt%

Figure S38. Quantitative analysis of the wavenumber changes of the V(C=O) of (A) ester bond and (B) amide bond, with temperature, PVPyCL₁₀ in D₂O, concentration=5wt%

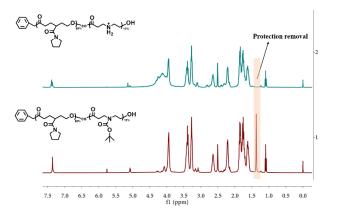


Figure S39. ¹H NMR spectrum of P(VPyCL_{50%}-co-NICL_{50%})₂₀

Figure S40. ¹H NMR spectrum of P(VPyCL_{90%}-co-Boc-NIPIL_{10%})₂₀ and deprotection product

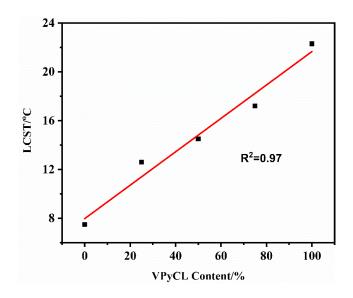
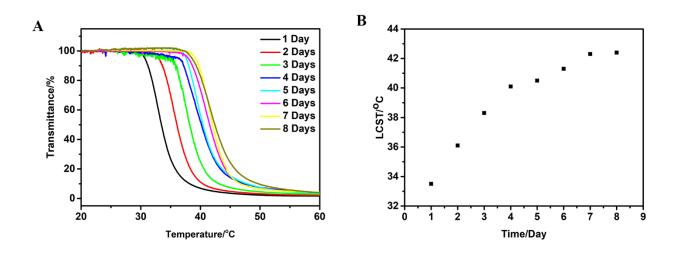
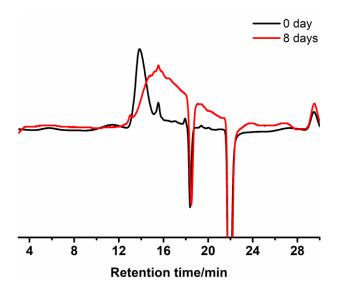



Figure S41. Temperature-dependent transmittance of P(VPyCL_x-co-NICL_{1-x})₂₀ Solutions


3 The degradation experiments of poly(γ-amide-ε-caprolactone)s

The degradation experiment was carried out under Lipase immobilized from *Candida Antarctica* in phosphate buffer solution (PBS, pH = 7.4) according to literature.⁷ In brief, 500mg P(VPyCL_{89%}-*co*-PIL_{11%})₂₀ was dispersed in 50ml PBS solution.100mg native enzyme was added into solution and stirred at 37°C. In order to ensure high activities of the enzyme throughout the experiment, native enzyme was replaced in 24h. 5ml solution was taken at pre-determined time to measure LCST of degraded polymer solution. Residual polymer solution was lyophilized to measure GPC curve in DMF.

Figure S42. (A) Transmittance versus temperature of P(VPyCL_{89%}-*co*-PIL_{11%})₂₀ under enzymatic conditions in different time. (B) LCST versus time of P(VPyCL_{89%}-*co*-PIL_{11%})₂₀ under

enzymatic conditions

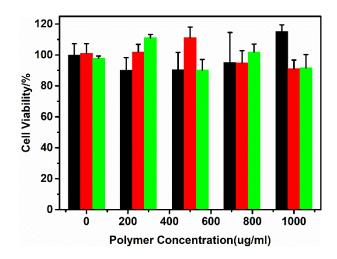


Figure S43. GPC curve of P(VPyCL_{89%}-*co*-PIL_{11%})₂₀ under enzymatic conditions for 0 day and 8 days

4 Cell viability experiments of poly(γ-amide-ε-caprolactone)s

Cell viability of PVPyCL₂₀, P(VPyCL_{89%}-*co*-PIL_{11%})₂₀ as well as its degraded product (degraded product was gained after P(VPyCL_{89%}-*co*-PIL_{11%})₂₀ degraded in enzyme solution for 8 days) was measured through MTT assay toward bone mesenchymal stem cells (MSCs). Before

cell viability experiments, all samples were dissolved in PBS solution with 10mg/ml concentration and sterilized by ultraviolet light for 30 min. Then MSCs were left to adhere and proliferate on the wells for 24 h, then incubated with a concentration range (from 0 to 1000 ug/mL) of PVPyCL₂₀, P(VPyCL_{89%}-*co*-PIL_{11%})₂₀ as well as its degraded product. After incubation for 24h or 96h, MTT solution was added to culture for an additional 4h, and the average optical density (OD) were measured by Universal Microplate Spectrophotometer. Cell viability was calculated according to the following formula: *Cell viability (%) = (ODsample)/(ODcontrol) × 100%*. Experiments were performed in triplicate.

Figure S44. Cell viability versus polymer concentration of PVPyCL₂₀ (black line) and P(VPyCL_{89%}-*co*-PIL_{11%})₂₀ (red line) and degraded product of P(VPyCL_{89%}-*co*-PIL_{11%})₂₀ (green line) and incubation for 24h, *n*=3

5 Poly(y-amide-*\varepsilon*-caprolactone)s/enzyme bioconjugation

5.1 Preparation of modified HRP

10mg HRP was mixed with 100mg P(VPyCL_{89%}-*co*-PIL_{11%})₂₀-NHS and 100mg PNIPAM-NHS (P(VPyCL_{89%}-*co*-PIL_{11%})₂₀-NHS and PNIPAM-NHS were prepared in section S1.8 and S1.9). 2ml PBS solution (PH=7.4, 10mM) was add into the flash to dissolve solid. After stirring at room temperature for 24h, reaction was terminated through dialysis (Mco=14000) in deionized water for 24h. Purified product was collected and stored in 4°C refrigerator (HRP modified with P(VPyCL_{89%}-*co*-PIL_{11%})₂₀ was denoted as HRP-1, HRP modified with PNIPAM was denoted as HRP-2).

5.2 Measurement of modified degree

Modified degree of HRP was determined through trinitrobenzene sulfonic acid (TNBS) experiment. Before measuring modified degree, an important reminder was that concentration of purified product was prior to be determined through with UV-vis spectroscopy at 405nm by using a standard curve method. Concentration of modified HRP was respectively 570ug/ml and 470ug/ml. native HRP, modified HRP-1 and HRP-2 were sufficiently mixed with 20ul TNBS solution. After reacting at 40°C for 2h, absorbance of solution was measured through with UV-vis spectroscopy at 420nm. Absorbance of native HRP, modified HRP-1 and HRP-2 was denoted as ΔA_{HRP} , ΔA_{HRP-1} , ΔA_{HRP-2} . Modified degree (E%) of HRP was determined according to the formula: $E\%=[(\Delta A_{HRP}/C_{HRP}-\Delta A_{sample})/(\Delta A_{HRP}/C_{HRP})]*100\%$.

5.3 Measurement of enzyme activity

Enzyme activity was determined through 3,3',5,5'-tetramethylbenzidine (TMB) liquid substrate system. In detail, native HRP, modified HRP-1 and HRP-2 were placed at 50°C water bath at different time. Then, these HRP samples were taken out to be mixed with TMB solution (TMB solution was prepared through equal mixture of TMB-A solution and TMB-B solution). After reacting at room temperature for 30min, 1M H₂SO₄ solution was added into the system to terminate reaction. Absorbance of solution was measured through with UV-vis spectroscopy at 450nm. Experiments were performed in triplicate.

References

5. Humphrey, W.; Dalke, A.; Schulten, K. VMD: visual molecular dynamics. J. , Mol. graph. 1996, 14, 33-38.

^{1.} Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. *Theor. Chem. Acc.* **2008**, *120*, 215-241.

^{2.} Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. *J. Chem. Phy.* **1980**, *72*, 650-654.

^{3.} Lefebvre, C.; Rubez, G.; Khartabil, H.; Boisson, J.-C.; Contreras-Garcia, J.; Henon, E. Accurately extracting the signature of intermolecular interactions present in the NCI plot of the reduced density gradient versus electron density. *Phys. Chem. Chem. Phys.* **2017**, *19*, 17928-17936.

^{4.} Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J.Comp. Chem. 2012, 33, 580-592.

^{6.} Blake, T. R.; Waymouth, R. M. Organocatalytic Ring-Opening Polymerization of Morpholinones: New Strategies to Functionalized Polyesters. J. Am. Chem. Soc. 2014, 136, 9252-9255.

^{7.} Guillaume G. H.; Maria C. A.; Marvin L.; Jonathan T. H.; Rachel K. O.; Andrew P. D. Poly(oligo(ethylene glycol) vinyl acetate)s: A Versatile Class of Thermoresponsive and Biocompatible Polymers. *Angew. Chem. Int. Ed.* **2017**, 56, 1–6.