Supporting Information

Nanoscale Copper(II)-Diethyldithiocarbamate Coordination Polymer as

Drug Self-delivery System for Highly Robust and Specific Cancer Therapy

Ying Peng¹, Peng Liu¹, Yingcai Meng¹, Shuo Hu^{2, 3}, Jinsong Ding^{1*} and Wenhu Zhou¹, _{2, 3*}

¹ Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China

² Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China

³ Key Laboratory of Biological Nanotechnology of National Health Commission

* Corresponding authors:

Email: dingjs0221@163.com (J. Ding); zhouwenhuyaoji@163.com (W. Zhou)

Figure S1. (A) Dynamic monitoring the size change of CuET NPs and CuET@HA NPs in PBS or DMEM (10% FBS) for 48 h. (B) Dynamic monitoring the size change of CuET NPs and CuET@HA NPs at 4 °C or room temperature for 48 days.

Figure S2. (A) Photographs of fluorescent dye-loaded CuET NPs (1: CuET NPs; 2: DOX-loaded CuET NPs; 3: RhB-loaded CuET NPs; 4: 5-FAN-loaded CuET NPs; 5: Cy7-loaded CuET NPs). (B) The encapsulation efficiencies of DOX, RhB, 5-FAM and Cy7 in CuET NPs.

Figure S3. The CD44 immunofluorescence of (A) HEK-293 cells and (B) M231 cells.

Figure S4. IC₅₀ of CuET NPs or CuET@HA NPs to M231 cells or HEK-293 cells.

Figure S5. Cell viability of M231 cells and HEK-293 cells treated with Cu²⁺ for 48 h.

Figure S6. The particle size of CuET NPs and CuET/Ce6 NPs.

Figure S7. The UV-Vis spectra of Ce6, CuET NPs and CuET/Ce6 NPs

Figure S8. Histological analysis of the heart, liver, spleen, lung and kidney of mice after 14 days treatment with different drugs.