Supporting Information

Fluorinated Aminopyridines: Synthesis, Structure, and Rare Liquid-Liquid Cocrystal Formation Driven by Unusually Short N–H···F–C Hydrogen Bonding

Andrew J. Peloquin^[†], Daniel A. Kure^[‡], Abby R. Jennings^[‡], Colin D. McMillen^[†], Scott T. Iacono^{*[‡]}, and William T. Pennington^{*[†]}

^[†]Department of Chemistry, Clemson University, Clemson, South Carolina (USA)

^[‡]Department of Chemistry & Chemistry Research Center, Laboratories for Advanced Materials, United States Air Force Academy, Colorado Springs, Colorado (USA)

*Correspondence e-mail: scott.iacono@afacademy.af.edu & billp@clemson.edu

Table of Contents

NMR Spectra

Compound 4	
Compound 7	S5–S7
Compound 9	
Compound 12	S11–S13
Compound 14	S14–S16
Compound 15	S17–S19
Compound 16	
Compound 17	S23–S25
Powder X-ray Patterns	
Cocrystal 18	S26–S27
Cocrystal 19	
Crystallographic Data	
Crystallographic Data and Structure Refinement Parameters	
Hydrogen Bond Geometry	S34–S37
Solid State Molecular Structure and Packing Diagrams	
Compound 2 poly a	S38–S39
Compound 2 poly b	S40–S42
Compound 4	S43–S44
Compound 5	S45–S46
Compound 6	S47–S48
Compound 8	
Compound 9	S51–S52
Compound 11	S53–S54
Compound 14	
Compound 15	S57–S58
Compound 16	
Compound 18	S61–S62
Compound 19	S63–S64
References	

Figure SI1. ¹H NMR of N^1 , N^6 -bis(perfluoropyridine-4-yl)hexane-1, 6-diamine (4)

Figure SI2. ¹³C NMR of N^1 , N^6 -bis(perfluoropyridine-4-yl)hexane-1, 6-diamine (4)

Figure SI3. ¹⁹F NMR of N^1 , N^6 -bis(perfluoropyridine-4-yl)hexane-1,6-diamine (4)

Figure SI4. ¹H NMR of 2,3,5,6-tetrafluoro-*N*-(1-phenylethyl)pyridin-4-amine (7)

Figure SI5. ¹³C NMR of 2,3,5,6-tetrafluoro-*N*-(1-phenylethyl)pyridin-4-amine (7)

Figure SI6. ¹⁹F NMR of 2,3,5,6-tetrafluoro-*N*-(1-phenylethyl)pyridin-4-amine (7)

Figure SI7. ¹H NMR of 4-(2,5-dihydropyrrol-1-yl)-2,3,5,6-tetrafluoropyridine (9)

Figure SI8. ¹³C NMR of 4-(2,5-dihydropyrrol-1-yl)-2,3,5,6-tetrafluoropyridine (9)

Figure SI9. ¹⁹F NMR of 4-(2,5-dihydropyrrol-1-yl)-2,3,5,6-tetrafluoropyridine (9)

Figure SI10. ¹H NMR of *N*¹-(perfluoropyridin-4-yl)benzene-1,4-diamine (**12**)

Figure SI11. ¹³C NMR of N^{1} -(perfluoropyridin-4-yl)benzene-1,4-diamine (**12**)

Figure SI12. ¹⁹F NMR of N^{1} -(perfluoropyridin-4-yl)benzene-1,4-diamine (**12**)

Figure SI13. ¹H NMR of 2-((perfluoropyridin-4-yl)amino)ethan-1-ol (14)

Figure SI14. ¹³C NMR of 2-((perfluoropyridin-4-yl)amino)ethan-1-ol (14)

Figure SI15. ¹⁹F NMR of 2-((perfluoropyridin-4-yl)amino)ethan-1-ol (14)

Figure SI16. ¹H NMR of 1,1'-((perfluoropyridin-4-yl)azanediyl)bis(propan-2-ol) (15)

Figure SI17. ¹³C NMR of 1,1'-((perfluoropyridin-4-yl)azanediyl)bis(propan-2-ol) (15)

Figure SI18. ¹⁹F NMR of 1,1'-((perfluoropyridin-4-yl)azanediyl)bis(propan-2-ol) (15)

Figure SI19. ¹H NMR of 4-(perfluoropyridin-4-yl)morpholine (16)

Figure SI20. ¹³C NMR of 4-(perfluoropyridin-4-yl)morpholine (16)

Figure SI21. ¹⁹F NMR of 4-(perfluoropyridin-4-yl)morpholine (16)

Figure SI22. ¹H NMR of 3,5-dimethyl-1-(perfluoropyridin-4-yl)piperazine (17)

Figure SI23. ¹³C NMR of 3,5-dimethyl-1-(perfluoropyridin-4-yl)piperazine (17)

Figure SI24. ¹⁹F NMR of 3,5-dimethyl-1-(perfluoropyridin-4-yl)piperazine (16)

Figure SI25. Powder x-ray diffraction of 18

Figure SI26. Predicted powder x-ray diffraction of 18

Figure SI27. Powder x-ray diffraction of 19

Figure SI28. Predicted powder x-ray diffraction of 19

-	2 poly a	2 poly b	3	4	5	6
Empirical formula	$C_{12}H_6F_8N_4$	$C_{12}H_6F_8N_4$	$C_{13}H_8F_8N_4$	$C_{16}H_{14}F_8N_4$	$C_{14}H_8F_8N_5$	$C_{19}H_{10}F_{12}N_6$
Formula weight (g/mol)	358.20	358.20	372.23	414.31	401.28	550.33
Crystal system	triclinic	monoclinic	trigonal	triclinic	triclinic	orthorhombic
Space group	$P\overline{1}$	C2/c	<i>P</i> 3 ₂ 12	$P\overline{1}$	$P\overline{1}$	C2221
Т (К)	100(2)	293(2)	200(2)	200(2)	194(2)	195(2)
<i>a</i> (Å)	7.6098(3)	14.789(8)	7.8415(5)	5.1158(3)	9.4703(4)	8.3092(4)
b (Å)	12.7754(3)	7.729(4)	7.8415(5)	9.2162(5)	13.0507(5)	13.7094(6)
<i>c</i> (Å)	13.1036(6)	13.470(7)	38.821(2)	17.8911(9)	13.1358(6)	16.9945(8)
α (°)	94.940(2)	90	90	83.186(2)	80.3030(10)	90
β (°)	100.813(2)	123.05(2)	90	89.723(2)	77.4010(10)	90
γ (°)	93.296(2)	90	120	85.492(2)	87.8050(10)	90
V (Å ³)	1243.11(10)	1290.5(12)	2067.3(3)	834.98(8)	1561.77(11)	1935.91(16)
D _{calcd} (g⋅cm ⁻³)	1.914	1.844	1.794	1.648	1.707	1.888
refins collected	39021	6802	25353	10838	43531	11255
unique reflns	5103	1508	2718	3424	6418	1897
observed refins	4376	1265	2649	2880	5226	1810
# parameters	449	113	235	262	512	174
R₁ [l>2σ(l)]	0.0323	0.0512	0.0333	0.0347	0.0328	0.0248
wR ₂ [<i>l</i> >2σ(<i>l</i>)]	0.0801	0.1216	0.0855	0.0842	0.0793	0.0662
R₁ (all)	0.0394	0.0600	0.0344	0.0431	0.0436	0.0265
wR ₂ (all)	0.0874	0.1304	0.0861	0.0890	0.0860	0.0672
R(int)	0.0276	0.0201	0.0332	0.0237	0.0288	0.0287
GooF	1.036	1.089	1.179	1.029	1.026	1.077
Flack parameter	N/A	N/A	-0.11(10)	N/A	N/A	0.39(18)
CCDC #	1994733	1994734	1994735	1994736	1994737	1994738

Table SI1. Crystallographic Data and Structure Refinement Parameters

	8	9	11	13	14
Empirical formula	$C_9H_8F_4N_2$	$C_9H_6F_4N_2$	$C_{11}H_6F_4N_2$	$C_{11}H_7F_4N_3$	$C_7H_6F_4N_2O$
Formula weight (g/mol)	220.17	218.16	242.17	257.20	210.14
Crystal system	orthorhombic	triclinic	orthorhombic	monoclinic	monoclinic
Space group	Pna2₁	$P\overline{1}$	<i>Pna</i> 2₁	P21/n	P21/n
Т (К)	188(2)	198(2)	100(2)	190(2)	100(2)
<i>a</i> (Å)	13.8300(6)	7.2959(4)	12.036(4)	8.1390(4)	8.0847(4)
b (Å)	10.1160(5)	9.9103(5)	10.696(3)	11.6656(6)	8.8845(4)
c (Å)	6.5854(3)	11.9251(6)	7.794(2)	10.9404(6)	10.9733(5)
α (°)	90	83.3790(10)	90	90	90
β (°)	90	84.7380(10)	90	91.2010(10)	96.975(2)
γ (°)	90	86.1790(10)	90	90	90
V (Å ³)	921.33(7)	851.51(8)	1003.4(5)	1038.52(9)	782.36(6)
D _{calcd} (g⋅cm ⁻³)	1.587	1.702	1.603	1.645	1.784
refins collected	15198	39728	191633	16102	33266
unique reflns	1884	3483	3465	2139	2856
observed refins	1432	3007	3021	1878	2431
# parameters	183	272	157	176	135
R₁ [l>2σ(l)]	0.0428	0.0412	0.0352	0.0318	0.0344
wR ₂ [<i>l</i> >2σ(<i>l</i>)]	0.0934	0.1099	0.0802	0.0844	0.0927
R₁ (all)	0.0610	0.0467	0.0450	0.0372	0.0419
wR₂ (all)	0.1053	0.1173	0.0861	0.0888	0.1007
R(int)	0.0326	0.0280	0.0475	0.0277	0.0315
GooF	1.047	1.052	1.031	1.058	1.024
Flack parameter	0.4(9)	N/A	0.2(3)	N/A	N/A
CCDC #	1994739	1994740	1906424	1994741	1912058

 Table SI1 (cont.).
 Crystallographic Data and Structure Refinement Parameters

	15	16	17·2H₂O	18	19
Empirical formula	$C_{11}H_{14}F_4N_2O_2$	$C_9H_8F_4N_2O$	$C_{11}H_{17}F_4N_3O_2$	$C_{17}H_{23}F_5N_2$	$C_{11}H_{13}F_5N_2$
Formula weight (g/mol)	282.24	236.17	299.27	350.37	268.23
Crystal system	triclinic	monoclinic	monoclinic	orthorhombic	monoclinic
Space group	$P\overline{1}$	<i>P</i> 2 ₁ / <i>c</i>	<i>P</i> 2 ₁ / <i>c</i>	C222 ₁	C2/c
Т (К)	186(2)	189(2)	207(2)	100(2)	188(2)
<i>a</i> (Å)	7.4644(4)	8.1474(5)	13.8558(15)	5.1831(12)	18.0262(14)
b (Å)	8.7054(5)	10.3929(6)	7.4780(7)	19.730(5)	7.9890(6)
<i>c</i> (Å)	10.8961(6)	11.3626(7)	13.2055(13)	15.662(4)	18.2560(14)
α (°)	98.501(2)	90	90	90	90
β (°)	98.008(2)	100.798(2)	100.504(3)	90	111.247(2)
γ (°)	115.3230(10)	90	90	90	90
V (Å ³)	616.51(6)	945.09(10)	1345.3(2)	1601.6(6)	2450.4(3)
D _{calcd} (g⋅cm ⁻³)	1.520	1.660	1.478	1.453	1.454
refins collected	11312	17300	10660	28624	22249
unique reflns	3050	2064	2732	3064	2274
observed refins	2641	1710	1836	2948	1682
# parameters	231	201	204	114	227
R₁ [<i>I</i> >2σ(<i>I</i>)]	0.0439	0.0479	0.0471	0.0432	0.0679
wR ₂ [<i>I</i> >2σ(<i>I</i>)]	0.1199	0.1193	0.1131	0.1188	0.1954
R₁ (all)	0.0498	0.0561	0.0805	0.0449	0.0877
wR ₂ (all)	0.1262	0.1290	0.1240	0.1209	0.2149
R(int)	0.0276	0.0345	0.0441	0.0542	0.0315
GooF	1.066	1.041	1.030	1.123	1.050
Flack parameter	N/A	N/A	N/A	0.14(19)	N/A
CCDC #	1994742	1994743	1994744	1986043	1994745

 Table SI1 (cont.).
 Crystallographic Data and Structure Refinement Parameters

Note to Table SI1: The Flack parameters of **6** and **11** are suggestive of some degree of twinning by inversion, and due to the use of Mo radiation, exhibit somewhat high standard uncertainties. Even so, the presence of fluorine provides enough anomalous dispersion to be comfortable with the absolute structure, particularly since the molecules are achiral and the structure analysis is not being used for establishing the absolute configuration. In this way, the data are sufficient for the focus of this study since the resulting hydrogen bonding interactions can still be plainly identified. A test refinement utilizing TWIN/BASF yieled no change in R_1 or wR_2 .

		2 poly a		
D–H…A	<i>D</i> –H	H…A	D…A	D–H…A
C6–H6A…F2	0.99	2.36	2.8908(17)	112.5
C6–H6B…F6	0.99	2.35	3.0215(17)	124.8
C7–H7A…F5	0.99	2.57	3.2730(17)	128
C7–H7A…F6	0.99	2.61	3.5892(17)	169.1
C7–H7B…F12	0.99	2.49	3.3188(17)	141.4
N2–H1N2…F3	0.84(2)	2.31(2)	2.7072(16)	109.6(16)
N2–H1N2⋯N8	0.84(2)	2.33(2)	3.0871(18)	151.2(18)
N3–H1N3…N5	0.83(2)	2.27(2)	3.0714(17)	161.2(19)
C18–H18A…F10	0.99	2.37	2.9112(17)	113.3
C18–H18B…F14	0.99	2.46	3.0994(17)	121.9
C19–H19A…F9	0.99	2.64	3.1848(17)	114.7
C19–H19B…F4	0.99	2.42	3.1976(17)	135
N6–H1N6…N4	0.855(19)	2.236(19)	3.0121(18)	150.8(16)
N7–H1N7…N1	0.87(2)	2.40(2)	3.2229(18)	158.9(19)
	2	2 poly b		
<i>D</i> –H…A	D–H	H···A	D…A	D–H…A
C6–H6A…F3	0.97	2.33	2.846(3)	112.3
C6–H6B…F1	0.97	2.51	3.388(3)	149.8
N2–H1N2…F2	0.83(2)	2.34(2)	2.730(2)	109.4(17)
N2–H1N2…N1	0.83(2)	2.45(2)	3.225(2)	155.6(18)
		3		
D–H…A	D–H	H…A	D…A	<i>D</i> –H…A
C6–H6A…F5	0.99	2.5	3.364(3)	146.1
C6–H6B…F2	0.99	2.33	2.845(4)	111.7
C6–H6B…F8	0.99	2.57	3.476(4)	152.2
C7–H7A…F2	0.99	2.6	3.177(3)	117
C8–H8B…F7	0.99	2.31	2.832(3)	111.8
N2–H1N2…N1	0.81(3)	2.45(3)	3.177(4)	150(3)
N3–H1N3…N4	0.81(3)	2.51(3)	3.260(3)	155(3)
		4		
<i>D</i> –H… <i>A</i>	D–H	H…A	D…A	<i>D</i> –H…A
N4–H1N4…N1	0.816(19)	2.53(2)	3.3327(18)	167.4(16)
N2–H1N2…F2	0.827(18)	2.312(17)	2.7019(15)	109.4(14)
N2–H1N2…N3	0.827(18)	2.429(18)	3.1881(18)	153.0(15)
C6–H6B…F3	0.99	2.29	2.8670(17)	116.3
C14–H14A…F6	0.99	2.32	2.8258(17)	111
C14–H14B…F1	0.99	2.55	3.2529(17)	127.6
C15–H15B…F6	0.99	2.59	3.1331(17)	114.7

Table SI2. Hydrogen-bond geometry (Å, °)

		5		
<i></i> H…A	D–H	H…A	D…A	<i>D</i> –H…A
N7–H1N7…N3	0.840(18)	2.132(18)	2.9542(16)	166.0(16)
C6–H6A…F16	0.99	2.43	3.2472(18)	140.1
C6–H6B…F1	0.99	2.61	3.4543(17)	143.6
C6–H6B…F2	0.99	2.23	2.8165(17)	116.9
C8–H8D…F7	0.99	2.51	3.1032(16)	118.1
C8–H8D…F11	0.99	2.52	3.1791(16)	124
C20–H20A…F10	0.99	2.3	2.8086(16)	110.6
C21–H21B…F6	0.99	2.56	3.2546(16)	126.7
C21–H21B…F10	0.99	2.56	3.1162(17)	115.5
C22–H22B…F4	0.99	2.58	3.4582(18)	147.5
C23–H23B…F9	0.99	2.53	3.3969(18)	146.3
C23–H23B…F14	0.99	2.21	2.9025(17)	126
N2–H1N2…N10	0.830(18)	2.447(18)	3.2025(18)	151.7(15)
N3–H1N3…N6	0.848(16)	2.645(16)	3.2884(17)	133.7(13)
N4–H1N4…N8	0.841(17)	2.125(17)	2.9501(17)	166.5(15)
N8–H1N8…F9	0.857(16)	2.469(16)	3.2395(14)	149.9(13)
N9–H1N9…N5	0.828(19)	2.387(19)	3.0735(18)	140.8(16)
		6		
<i>D</i> –H…A	D–H	H…A	D…A	<i>D</i> –H…A
N2–H1N2…N1	0.80(3)	2.50(3)	3.255(3)	157(3)
C6–H6B…F2	0.99	2.18	2.914(2)	129.3
C7–H7A…F2	0.99	2.45	3.200(2)	132.3
C7–H7B…F4	0.99	2.6	3.234(2)	121.5
C7–H7B…F6	0.99	2.3	2.915(2)	119.5
		8		
<u> </u>	<i>D</i> –H	H…A	D···A	<i>D</i> –H…A
C8B–H8B2…F3	0.99	2.72	3.307(19)	118.3
C9B–H9B1…F4	0.99	2.63	3.51(3)	147.9
C9B–H9B2…F2	0.99	2.58	3.086(19)	111.3
	.	9	D (
<u> </u>	<u> </u>	<u>H…A</u>		<u>D–H…A</u>
C9–H9A…F7	0.99	2.53	3.2016(15)	125.3
C15–H15A…F4	0.99	2.56	3.4081(16)	144
C17–H17…N3	0.95	2.67	3.4456(17)	139.8

Table SI2 (cont.). Hydrogen-bond geometry (Å, °)

D_H…A	Л_Н	11 ⊢…⊿	۵	∩_H…⊿
<u> </u>	0.85(3)	2 20(3)	3 046(2)	169(3)
		(0)	01010(_)	
		13		
<i>D</i> −H…A	D–H	H…A	D…A	<i>D</i> –H…A
N2–H1N2…N3	0.849(18)	2.175(19)	2.9890(16)	160.5(16)
N3–H2N3…N1	0.870(19)	2.547(19)	3.3264(17)	149.6(15)
C8–H8…F2	0.95	2.57	3.4428(15)	153.7
C11-H11F1	0.95	2.62	3.3986(16)	139
		14		
D–H…A	D–H	H…A	D····A	D–H…A
N2–H1N1…O1	0.894(17)	1.983(17)	2.8412(11)	160.4(15)
01–H101…N1	0.826(18)	2.096(18)	2.9068(11)	166.9(16)
C7–H7A…F1	0.99	2.51	3.3661(11)	144.5
C7–H7A…F3	0.99	2.5	3.1277(11)	120.7
C7–H7B…F1	0.99	2.63	3.3283(11)	127.3
C7–H7B…F3	0.99	2.52	3.3924(11)	146.9
		15		
D–H…A	D–H	H…A	D…A	<i>D</i> –H…A
02–H02…O1A	0.840(16)	1.961(17)	2.781(2)	165(2)
02–H02…01B	0.840(16)	2.15(2)	2.912(11)	151(2)
01A-H01A···02	0.896(16)	1.905(17)	2.773(2)	163(2)
C6A–H6AA…F2	0.99	2.24	2.891(2)	122.3
C7A–H7A…F4	1	2.49	3.3184(16)	139.4
C8A–H8AB…F3	0.98	2.58	3.277(4)	127.8
01B–H01B…02	0.95(2)	2.08(8)	2.912(11)	145(11)
C7B–H7B…F1	1	2.55	3.543(10)	170.7
C8B–H8B1…F3	0.98	2.57	3.07(2)	112.3
C9–H9A…F3	0.99	2.33	2.9364(14)	118.5
		16		
D−H…A	D–H	<u>H</u> ···A	D····A	D–H…A
C6A–H6AA…F2	0.99	2.13	2.702(3)	114.8
C6A–H6AA…F2	0.99	2.58	3.331(3)	132.5
C8A–H8AB…F3	0.99	2.42	2.979(4)	115
C9A–H9AB…F3	0.99	2.59	3.566(3)	167.8
C6B–H6BB…F2	0.99	2.54	3.219(6)	125.7
C6B–H6BB…F2	0.99	2.58	3.352(4)	134.9
C9B–H9BA…F3	0.99	2.54	3.507(5)	165.3

Table SI2 (cont.). Hydrogen-bond geometry (Å, °)

17·2H2O						
D–H…A	D–H	H…A	D…A	<i>D</i> –H…A		
C6–H6B…F2	0.98	2.18	2.818(2)	121.6		
C9–H9A…F1	0.98	2.59	3.458(3)	148.3		
C9–H9A…F3	0.98	2.24	2.799(2)	114.8		
N3–H1N3…O1	0.83(2)	2.63(2)	3.439(3)	163(2)		
O2–H1O2…N1	0.826(10)	2.348(11)	3.158(3)	167(3)		
O2–H2O2…O1	0.822(10)	2.05(2)	2.738(3)	141(3)		
01–H2O1…N3	0.884(10)	2.066(16)	2.898(3)	157(3)		
18						
<i>D</i> –H…A	D–H	H…A	D…A	<i>D</i> –H…A		
N2–H1N2…F3	0.82(5)	2.14(5)	2.9546(12)	170(5)		
C5–H5A…F2	0.99	2.35	3.1142(19)	133.5		
18						
<i>D</i> –H…A	D–H	H…A	D…A	<i>D</i> –H…A		
N2–HNA…F3	0.873(14)	1.893(19)	2.749(4)	166(5)		
N2–HNB…F3	0.873(14)	1.869(17)	2.742(4)	176(13)		

Table SI2 (cont.). Hydrogen-bond geometry (Å, $^\circ)$

Note: All hydrogen atoms positions indicated in this table are *before* extension to neutron distances

Figure SI29. Molecular stucture of 2 poly a. Thermal ellipsoids are shown at the 50% probability level.

Figure SI30. Solid state packing of **2 poly a**. Intermolecular N–H···N_{pyridine} (orange), C–F···F–C (pink), and C–H···F (green) interactions are indicated by dashed lines. H atoms, except those bound to donor atoms of the indicated intermolecular interactions, have been omitted for clarity. Thermal ellipsoids are shown at the 50% probability level.

Figure SI31. Molecular stucture of 2 poly b. Thermal ellipsoids are shown at the 50% probability level.

Figure SI32. Solid state packing of **2 poly b**. Intermolecular N–H···N_{pyridine} (orange), C–F···F–C (pink), and C–H···F (green) interactions are indicated by dashed lines. H atoms, except those bound to donor atoms of the indicated intermolecular interactions, have been omitted for clarity. Thermal ellipsoids are shown at the 50% probability level.

Figure SI33. Unit cell packing of **2 poly a** (top) compared to **2 poly b** (bottom) as viewed down the *c* axis. H atoms have been omitted for clarity. Thermal ellipsoids are shown at the 50% probability level.

Figure SI34. Molecular stucture of 4. Thermal ellipsoids are shown at the 50% probability level.

Figure SI35. Solid state packing of **4**. Intermolecular N–H···N_{pyridine} (orange) and C–F···F–C (pink) interactions are indicated by dashed lines. H atoms, except those bound to donor atoms of the indicated intermolecular interactions, have been omitted for clarity. Thermal ellipsoids are shown at the 50% probability level.

Figure SI36. Molecular stucture of 5. Thermal ellipsoids are shown at the 50% probability level.

Figure SI37. Solid state packing of **5**. Intermolecular N–H···N_{pyridine} (orange), N–H···N_{amine} (teal), and C–H···F (green) interactions are indicated by dashed lines. H atoms, except those bound to donor atoms of the indicated intermolecular interactions, have been omitted for clarity. Thermal ellipsoids are shown at the 50% probability level.

Figure SI38. Molecular stucture of 5. Thermal ellipsoids are shown at the 50% probability level.

Figure SI39. Solid state packing of **6**. Intermolecular N–H···N_{pyridine} (orange), C–F···F–C (pink), and C–H···F (green) interactions are indicated by dashed lines. H atoms, except those bound to donor atoms of the indicated intermolecular interactions, have been omitted for clarity. Thermal ellipsoids are shown at the 50% probability level.

Figure SI40. Molecular stucture of 8. Thermal ellipsoids are shown at the 50% probability level.

Figure SI41. Solid state packing of **8**. Intermolecular C–H···N_{pyridine} (light blue) and C–H···F (green) interactions are indicated by dashed lines. H atoms, except those bound to donor atoms of the indicated intermolecular interactions, have been omitted for clarity. Thermal ellipsoids are shown at the 50% probability level.

Figure SI42. Molecular stucture of 9. Thermal ellipsoids are shown at the 50% probability level.

Figure SI43. Solid state packing of **9**. Intermolecular C–H···N_{pyridine} (light blue) and C–F···F–C (pink) interactions are indicated by dashed lines. H atoms, except those bound to donor atoms of the indicated intermolecular interactions, have been omitted for clarity. Thermal ellipsoids are shown at the 50% probability level.

Figure SI44. Molecular stucture of 11. Thermal ellipsoids are shown at the 50% probability level.

Figure SI45. Solid state packing of **11**. Intermolecular N–H···N_{pyridine} (orange) and C–F···F–C (pink) interactions are indicated by dashed lines. H atoms, except those bound to donor atoms of the indicated intermolecular interactions, have been omitted for clarity. Thermal ellipsoids are shown at the 50% probability level.

Figure SI46. Molecular stucture of 14. Thermal ellipsoids are shown at the 50% probability level.

Figure SI47. Solid state packing of **14**. Intermolecular O–H···N_{pyridine} (magenta), N–H···O (blue) and C–H···F (green) interactions are indicated by dashed lines. H atoms, except those bound to donor atoms of the indicated intermolecular interactions, have been omitted for clarity. Thermal ellipsoids are shown at the 50% probability level.

Figure SI48. Molecular stucture of **15**. Thermal ellipsoids are shown at the 50% probability level.

Figure SI49. Solid state packing of **15**. Intermolecular O–H···O (blue) and O–H···F (green) interactions are indicated by dashed lines. H atoms, except those bound to donor atoms of the indicated intermolecular interactions, have been omitted for clarity. Thermal ellipsoids are shown at the 50% probability level.

Figure SI50. Molecular stucture of 16. Thermal ellipsoids are shown at the 50% probability level

Figure SI51. Solid state packing of **16**. Intermolecular C–H···N_{pyridine} (light blue) and O–H···F (green) interactions are indicated by dashed lines. H atoms, except those bound to donor atoms of the indicated intermolecular interactions, have been omitted for clarity. Thermal ellipsoids are shown at the 50% probability level.

Figure SI52. Molecular stucture of 18. Thermal ellipsoids are shown at the 50% probability level

Figure SI53. Solid state packing of **18**. Intermolecular C–H···N_{pyridine} (light blue), N–H···F (red), and C–H···F (green) interactions are indicated by dashed lines. H atoms, except those bound to donor atoms of the indicated intermolecular interactions, have been omitted for clarity. Thermal ellipsoids are shown at the 50% probability level.

Figure SI54. Molecular stucture of 19. Thermal ellipsoids are shown at the 50% probability level

Figure SI55. Solid state packing of **19**. Intermolecular C–H···N_{pyridine} (light blue), N–H···F (red), and C–H···F (green) interactions are indicated by dashed lines. H atoms, except those bound to donor atoms of the indicated intermolecular interactions, have been omitted for clarity. Thermal ellipsoids are shown at the 50% probability level.

- [1] H. E. Gottlieb, V. Kotlyar, A. Nudelman, J. Org. Chem. 1997, 62, 7512–7515.
- [2] Bruker, Apex3, Bruker AXS, Madison, WI, USA, 2015.
- [3] G. M. Sheldrick, Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3-8.

[4] I. P. Beletskaya, G. A. Artamkina, V. A. Ivushkin, R. Guilard, *Tetrahedron Lett.* **2000**, *41*, 313–316.

[5] R. Ranjbar-karimi, A. Khaje-Khezri, *Heterocycles* 2015, 91, 738–746.

[6] R. Ranjbar-karimi, M. Mashak-shoshtari, A. Darehkordi, *Ultrason. - Sonochemistry* **2011**, *18*, 258–263.

[7] N. Matsuda, K. Hirano, T. Satoh, M. Miura, Org. Lett. 2011, 13, 2860–2863.