Supporting information

Fabrication of MnO_x-CeO₂ based catalytic filters and their application in low temperature selective catalytic reduction of NO with NH₃

Weiman Li^{1,2}, Haidi Liu², Yunfa Chen²*

1 University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049,China

2 State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.

*chenyf@ipe.ac.cn

Figure S1. A digital photo of a piece of mullite fibrous tube

Figure S2. (A) SEM image, (B) EDS mapping, (C) XRD pattern and (D) porosity data of a bare filter.

Figure S3. The mass spectra collected during the NH₃-TPD experiments, H₂O and

N₂, no NO₂ was detected

Figure S4. NO oxidation over Mn_xCe_{10-x} (LW = 4%) catalytic filters at different temperatures, reaction condition: [NO] = 400 ppm, [O₂] = 5 vol% and balanced N₂, face velocity = 2 m/min

Figure S5. The adsorption isotherm of samples with different loading weights

To further confirm the influence of LW on the redox property, H₂-TPR spectra were performed on CFs with different LWs, as shown in the Figure S6(A). For all samples, there were two main peaks on each spectra. The peak centered at ~260 °C can be assigned to the reduction of $MnO_2 \rightarrow Mn_2O_3$. With the increase of LW, the peak firstly shifted to lower temperature range, then shifted to higher temperature range. The sample with a LW of 4.18% had lowest reduction temperature, indicating it had the highest Mn^{4+} ratio. H₂ consumption is related to redox properties. We calculated the H₂ consumption by calculating the integral area of each spectra (100-600 °C), as shown in Figure S6(B). The H₂ consumption generally increased linearly with LWs, which meant the H₂ consumption is related with catalysts on the fibers. However, in this study, as 4.18% had the largest ratio of Mn^{4+} , the reducibility was enough for the reaction.

Figure S6. (A) H₂-TPR spectra of CFs with different LWs and (B) the relationship between LW and the integral area of H₂-consumption

Table S1 specific surface area, pore volume and pore diameter of samples

with	different	Ι	W	Ś
------	-----------	---	---	---

LW	SSA (m^2/g)	Pore volume (mL/g)	Pore diameter (nm)
 1.05%	6	0.03450	20.70
2.09%	7	0.03391	18.88
4.18%	9	0.04608	19.92
6.27%	18	0.06219	14.00
8.36%	29	0.06598	10.84