## Supplementary Information:

## The Synthesis Success Calculator: Predicting the Rapid Synthesis of DNA Fragments with Machine Learning

Sean M. Halper ${ }^{1}$, Ayaan Hossain ${ }^{2}$, Howard Salis ${ }^{1,2,3,4}$
${ }^{1}$ Department of Chemical Engineering, ${ }^{2}$ Bioinformatics and Genomics, ${ }^{3}$ Department of Biological Engineering, ${ }^{4}$ Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802. Correspondence should be addressed to H.M.S. (salis@psu.edu).

Supplementary Table 1: Sequence determinants used for initial model training and feature reduction. Rules were derived from synthesis guidelines from multiple commercial service providers as well as unique metrics developed in this work.

| Feature Type | Feature | Description |
| :---: | :---: | :---: |
| Repeats | Most frequent repeat count | Number of copies of most abundant repeat in construct |
|  | Scaled 9-mer repeat metric | Scaled count of repeated 9-mers divided by length of construct |
|  | High repeat density (70 bp) | Count of 70 bp windows where $90 \%$ of nucleotides participate in a repeat pair |
|  | High repeat density ( 500 bp ) | Count of 500 bp windows where $60 \%$ of nucleotides participate in a repeat pair |
|  | Repeats in proportion to sequence length | Count of repeats where $40 \%$ of total sequence is a specific repeat |
|  | Total repeat density | Flag if $69 \%$ of nucleotides in the total sequence are participating in any repeat pair |
|  | Longest Repeat | Length of longest maximal repeat |
|  | Repeats of length $<10 \mathrm{bp}$ | Count of maximal repeats less than or equal to 10 bp |
|  | Repeats of length 10-15 bp | Count of maximal repeats between 11 and 15 bp |
|  | Repeats of length 15-20 bp | Count of maximal repeats between 16 and 20 bp |
|  | Repeats of length 20-25 bp | Count of maximal repeats between 21 and 25 bp |
|  | Repeats of length 25-40 bp | Count of maximal repeats between 26 and 40 bp |
|  | Repeats of length $>40 \mathrm{bp}$ | Count of maximal repeats greater than 40 bp |
|  | Tandem repeats $>5 \mathrm{bp}$ | Count of repeats 5 or greater separated by 5 or fewer bp |
|  | Terminal repeats | Count of repeats longer than 10 bp in the $5^{\prime}$ or $3^{\prime} 60 \mathrm{bp}$ |
| Hairpins | Hairpins of length > 20 bp | Count of hairpins with a stem length of 20 bp or greater |
|  | Longest hairpin stem | Length of longest stem of predicted hairpins in construct |
|  | Palindromes | Count of direct palindromes in construct |
|  | GC richest hairpin | Highest GC content of hairpins with high GCs |
|  | Strong hairpins | Count of hairpins with GC content above $80 \%$ |
|  | Terminal hairpins | Count of hairpins found in the 5' or 3' 60 bp |
|  | Large secondary structures | Secondary structures that sequester 17 contiguous bp of DNA within 100 bp |
| GC Content | High GC (100 bp) | Count of 100 bp windows with $\mathrm{GC}>70 \%$ |
|  | Low GC (100 bp) | Count of 100 bp windows with GC $<30 \%$ |
|  | High GC ( 20 bp ) | Count of 20 bp windows with GC $>80 \%$ |
|  | Low GC (20 bp) | Count of 20 bp windows with GC $<20 \%$ |
|  | High GC (terminal 60 bp ) | Count of 20 bp windows within 5' or 3' 60 bp wher e GC $>70 \%$ |
|  | Low GC (terminal 60 bp ) | Count of 20 bp windows within 5' or 3' 60 bp wher e GC $<30 \%$ |
|  | High Tm (20bp) | Count of 20 bp windows with $\mathrm{Tm} \geq 70^{\circ} \mathrm{C}$ |
|  | Low Tm (20bp) | Count of 20 bp windows with $\mathrm{Tm} \leq 40^{\circ} \mathrm{C}$ |
|  | GC changes (100 bp) | Count of 100 bp windows where the GC content of an pair of 20bp subwindows changes by $\geq 50 \%$ |
|  | Tm changes (100 bp) | Count of 100 bp windows where the Tm of any pair of 20bp subwindows changes by $\geq 30$ |
|  | Total GC content | Total GC content of the construct |
| Misc | Construct size | Length in bp of the construct of interest |
|  | Polynucleotide runs | Count of poly N runs |
|  | Motif runs | Count of poly NN or NNN runs |
|  | G quadruplexes | Count of tandem repeated poly Gs that might result in a g quadruplex |
|  | i-motifs | Count of tandem repeated poly Cs that might result in an i -motif |

Supplementary Table 2: Design rules used to generate DNA fragment sequences that can not be readily synthesized (negative controls).


Supplementary Table 3: Hyperparameters used for each random forest used by the Synthesis Success Calculator.

| Round | Max_features | Class_weight | N_estimators | Min_samples_split | Min_samples_leaf |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Feature reduction | 'auto' | None | 200 | 4 |  |
| Round 1: <br> RandomSearchCV <br> 100 | 'auto' | None | 600 | 8 | 4 |
| Round 2: <br> GridSearchCV 50 | 'auto' | None | 1200 | 4 | 3 |
| Round 3: <br> GridSearchCV <br> 100 | 'auto' | None | 1512 | 5 | 2 |



Supplementary Figure 1: Classifier features and performance, prior to oversampling. (a) Feature importances based on 575 training datapoints. Error bars represent standard deviation of importances for trees in the forest $(\mathrm{n}=1512)$ (b) Predicted and actual synthesis outcomes across 251 DNA fragment sequences in the unseen test set. S: Synthesis success. D: Synthesis failure.


Supplementary Figure 2: The predicted probabilities of synthesis success versus feature values across the 595 DNA fragment sequences in the training set and across the reduced feature set.


Supplementary Figure 3: Improvements to predicted synthesis outcomes for 101 E. coli proteins after targeted recoding of their protein coding sequences by $5,10,15$, or $20 \%$ amounts. Squares and error bars represent the mean and standard deviation of the predicted synthesis probabilities across 101 proteins ( $\mathrm{n}=101$ ).

