Isolation of 2-Alkyl-4-quinolones with Unusual Side Chains from a Chinese *Pseudomonas aeruginosa* Isolate

Jianye Li, Weiwei Sun, Muhammad Saalim, Guixiang Wei, Diana A. Zaleta-Pinet, and Benjamin

R. Clark

Supporting Information

Contents

Figure S1	Phylogenetic analysis of BD06-03 based on the 16S rDNA sequences	S3				
Figure S2	HPLC chromatograms from strain BD06-03 grown in different media	S4				
Scheme S1	Proposed biosynthetic origin of quinolones 1 and 4 .	S9				
Figure S3	HPLC-DAD analysis of precursor feeding studies for BD06-03	S10				
Procedures for 16S rDNA amplification Extraction and Separation (expanded) Structures of known compounds from BD06-03 Experimental Data for known compounds Synthetic procedures Feeding studies MTT Assay						
Table S1	Cytotoxic activity of selected compounds	S11				
Table S2	Microbes used in antimicrobial testing	S12				
Table S3	Zones of inhibition of selected compounds	S12				
Table S4	¹ H NMR and ¹³ C NMR assignments of compounds S1-S4	S13				
Table S5	¹ H NMR and ¹³ C NMR assignments of compounds S5-S9	S14				
Table S6	¹ H NMR and ¹³ C NMR assignments of compounds S10-S14	S15				
Table S7	¹ H NMR and ¹³ C NMR assignments of compounds S15-S19	S16				
Table S8	¹ H NMR and ¹³ C NMR assignments of compounds S20-S23	S17				
MS and NMR	data for new compound 1	S18-S20				
MS and NMR	data for new compound 2	S21-S23				
MS and NMR	data for new compound 3	S24-S26				
MS and NMR	data for new compound 4	S27-S29				
MS and NMR	data for new compound 5	S30-S33				
MS and NMR	data for new compound 6	S34-S36				
MS and NMR	data for compound S1	S37-S38				
MS and NMR	data for compound S2	S39-S41				
MS and NMR	data for compound S3	S42-S44				
MS and NMR	data for compound S4	S45-S47				
MS and NMR	data for compound S5	S48-S49				
MS and NMR	data for compound S6	S50-S51				
MS and NMR	data for compound S7	S52-S53				
MS and NMR	data for compound S8	S54-S55				
MS and NMR	data for compound S9	S56-S58				
MS and NMR	data for compound S10	S59-S61				
MS and NMR	data for compound S11	S62-S64				
MS and NMR	data for compound S12	S65-S67				
MS and NMR	data for compound S13	S68-S70				
MS and NMR	data for compound S13	S71-S73				
MS and NMR MS and NMR MS and NMR MS and NMR MS and NMR MS and NMR	data for compound S15 data for compound S16 data for compound S17 data for compound S18 data for compound S19 data for compound S20 data for compound S21 data for compound S22	\$74-\$76 \$77-\$79 \$80-\$82 \$83-\$85 \$86-\$88 \$89-\$90 \$91-\$92 \$93-\$94				
IVIS and INIVIR		046-546				

Additional References

Procedures for 16S rDNA amplification

The 16S rRNA genes were amplified using PrimeSTAR® HS DNA Polymerase (Takara, DaLian, China) in Mastercycler Nexus gradient (Eppendorf, Germany) with universal primers 27F (5`-AGAGTTTGATCCTGGCTCAG-3`) and 1541R (5`-AAGGAGGTGATCCAGCCGCA-3`). The total reaction volume was 50 μ L. The mixtures were composed of 10 μ L 5×Primer Buffer, 4 μ L dNTP Mixture (2.5 mM), 1 μ L 1:50 diluted primer (27F and 1541R), 200 ng DNA template, 0.5 μ L HS DNA polymerase and RNA-free H₂O. The PCR three-step reaction started from denaturation at 98°C for 10s, primer annealing followed at 55°C for 15 s, and the extension was performed at 72°C for 1 min 30 s (30 cycles). After PCR cloning, agarose gel electrophoresis was run to confirm the sample was clean. The amplified DNA products were sequenced by TsingKe Biological Technology in Beijing. Subsequently, the 16S rDNA sequences were analyzed by using gene BLAST in the NCBI database.

Figure S1. Phylogenetic analysis of BD06-03 based on 16S rDNA sequences. Phylogeny reconstruction was analyzed by use of the neighbor-joining statistical method and test of phylogeny using Bootstrap method.

Figure S2. HPLC chromatograms (210 nm) of DCM extracts from strain BD06-03 grown in different media including TSB, PDB, NB, CZB, and ISP4. Standard analytical gradient: flow rate: 0.8 mL/min; gradient: 10%-100% ACN; Column: SB-C₁₈, 4.6 ×150 mm, 3.5 μ m.

Extraction and Separation (expanded).

After seven days of cultivation, all culture flasks were combined and extracted with equal volumes of CH_2Cl_2 , EtOAc and *n*-butanol (BuOH) three times each (all 10 L). The solvent was removed under vacuum (Savant SC 210A, Ameritech), to yield dry solvent extracts: CH_2Cl_2 extract (1.1 g), EtOAc extract (0.5 g) and BuOH extract (0.8 g).

The CH₂Cl₂ extract (1.1 g) was fractionated through HP-20 resin in an open column, eluting with H₂O-MeOH by a stepwise elution gradient (100:0, 80:20, 60:40, 40:60, 20:80, 0:100). Fractions of 60% MeOH (Fr.1), 80% MeOH (Fr. 2) and 100% MeOH (Fr.3) were selected as the primary fractions for the continued separation.

Fr.1 (60% MeOH) (80 mg) was subjected to semi-preparative HPLC (ZORBAX SB-C₁₈, 5 μ m, 9.4 x 250 mm, Agilent Technologies Co.), with an isocratic elution of 10% MeCN in H₂O at a flow rate of 3 mL/min, to yield *N*-(2-hydroxyphenyl)-acetamide (R_t 7.0 min, 1.1 mg).

Fr.3 (1.4 g) was subjected to silica gel column chromatography, eluting with CH₂Cl₂-MeOH (100:0→0:100) to afford seven subfractions (Fr. 3-1 to Fr. 3-5). Subfraction Fr. 3-1 was further purified on a Shimadzu LC-20 AR semi-preparative HPLC (Pursuit XRs5 C18), using an isocratic elution (25% MeCN) to yield 1-hydroxyphenazine (S20, 6 mg), phenazine-1-carboxylic acid (S21, 16 mg) and phenazine-1-carboxamide (S22, 4 mg). Subfraction Fr. 3-2, Fr. 3-3 and Fr. 3-4 were purified by semi-preparative HPLC (ZORBAX SB-C18), eluting with 25% MeCN for 20 min and 38% MeCN for 25 min then 44% MeCN for 30 min and then 55% MeCN 15 min then 20 min to 100% MeCN for 30 min to yield compound 2 (1.0 mg), compound 5 (0.7 mg), compound 6 (1.8 mg), compound S3 (1.6 mg), compound S4 (1.1 mg), compound S9 (3.2 mg), compound S14 (7.2 mg), compound S15 (1.2 mg), 2-heptyl-1-hydroxyl-4-quinolone (S16) (9 2-nonyl-1-hydroxyl-4-quinolone (S17) (2.2 mg), 2-(Z-undec-4-enyl)-1-hydroxylmg), 4-quinolone (S18) (1.2 mg), 3-heptyl-3-hydroxy-1,2,3,4-tetrahydroquinoline-2,4-dione (S19) (4.5 mg) and several two-compound mixtures. These mixtures were poorly separated with an ACN-H₂O system, thus, they were further purified on a Shimadzu LC-20 AR semi-preparative HPLC (ZORBAX SB-C18), using an isocratic elution (67% MeOH) to yield compounds S1 (12.0 mg) and compound S2 (3.0 mg), compound S5 (8.0 mg) and compound S6 (3.0 mg) (70% MeOH), compound S7 (6.0 mg) and compound S8 (3.0 mg) (73% MeOH), compound S10 (3.0 mg) and compound S11 (2.0 mg) (78% MeOH), and compound S12 (5.0 mg) and compound **S13** (3.0 mg) (80% MeOH).

Experimental data for known compounds

2-heptyl-4-quinolone (HHQ) (S1): colorless solid; UV-Vis (MeOH) λ_{max} 212 nm, 236 nm, 316 nm, 326 nm; ¹H NMR (methanol- d_4 , 600 MHz) and ¹³C NMR (methanol- d_4 , 150 MHz) spectra matched well (Table S2) with literature data.^{S1} HRESIMS m/z 244.1693 [M+H]⁺ (calcd for C₁₆H₂₂NO, 244.1696).

2-(*E-hept-1-enyl*)-4-quinolone (S2): colorless solid; UV-Vis (MeOH) λ_{max} 210 nm, 258nm, 309 nm, 334 nm; For ¹H NMR (CDCl₃, 600 MHz) and ¹³C NMR (CDCl₃, 150 MHz) spectra, see Table S2. HRESIMS *m*/*z* 242.1534 [M+H]⁺ (calcd for C₁₆H₂₀NO, 242.1539).^{S2}

2-(*E-hept-2-enyl*)-4-quinolone (S3): colorless solid; UV-Vis (MeOH) λ_{max} 211 nm, 240nm, 316 nm, 327 nm; ¹H NMR (CDCl₃, 600 MHz) and ¹³C NMR (CDCl₃, 150 MHz) spectra matched well (Table S2) with literature data.^{S3} HRESIMS *m*/*z* 242.1534 [M+H]⁺ (calcd for C₁₆H₂₀NO, 242.1539).

2-(6-methyl)-heptyl-4-quinolone (S4): colorless solid; UV-Vis (MeOH) λ_{max} 212 nm, 235nm, 315 nm, 325 nm; ¹H NMR (CDCl₃, 600 MHz) and ¹³C NMR (CDCl₃, 150 MHz) spectra matched well (Table S2) with literature data.¹² HRESIMS *m*/*z* 537.3489 [2M+Na]⁺ (calcd for C₃₄H₄₆N₂O₂Na, 537.3457).

2-octyl-4-quinolone (S5): colorless solid; UV-Vis (MeOH) λ_{max} 211 nm, 238nm, 316 nm, 327 nm; ¹H NMR (CDCl₃, 600 MHz) and ¹³C NMR (CDCl₃, 150 MHz) spectra matched well (Table S3) with literature data.¹⁰ HRESIMS *m*/*z* 537.3521 [2M+Na]⁺ (calcd for C₃₄H₄₆N₂O₂Na, 537.3457).

2-(*E-oct-1-enyl*)-4-quinolone (S6): colorless solid; UV-Vis (MeOH) λ_{max} 210 nm, 258 nm, 309 nm, 334 nm; For ¹H NMR (CDCl₃, 600 MHz) and ¹³C NMR (CDCl₃, 150 MHz) spectra, see Table S3.¹⁰ HRESIMS *m*/*z* 533.3151 [2M+Na]⁺ (calcd for C₃₄H₄₂N₂O₂Na, 533.3144).

2-nonyl-4-quinolone (S7): colorless solid; UV-Vis (MeOH) λ_{max} 211 nm, 238 nm, 316 nm, 327 nm; ¹H NMR (CDCl₃, 600 MHz) and ¹³C NMR (CDCl₃, 150 MHz) spectra matched well (Table S3) with literature data.¹⁰ HRESIMS *m*/*z* 565.3825 [2M+Na]⁺ (calcd for C₃₆H₅₀N₂O₂Na, 565.3770).

2-(*E-non-1-enyl*)-4-quinolone (S8): colorless solid; UV-Vis (MeOH) λ_{max} 210 nm, 258nm, 309 nm, 334 nm; ¹H NMR (CDCl₃, 600 MHz) and ¹³C NMR (CDCl₃, 150 MHz) spectra matched well (Table S3) with literature data.¹⁰ HRESIMS *m*/*z* 561.3502 [2M+Na]⁺ (calcd for C₃₆H₄₆N₂O₂Na, 561.3457).

2-(*E-non-2-enyl*)-4-quinolone (**S9**): colorless solid; UV-Vis (MeOH) λ_{max} 211 nm, 238nm, 316 nm, 327 nm; ¹H NMR (CDCl₃, 600 MHz) and ¹³C NMR (CDCl₃, 150 MHz) spectra matched well (Table S3) with literature data.^{S3} HRESIMS *m*/*z* 561.3493 [2M+Na]⁺ (calcd for C₃₆H₄₆N₂O₂Na, 561.3457).

2-decyl-4-quinolone (S10): colorless solid; UV-Vis (MeOH) λ_{max} 211 nm, 238nm, 316 nm, 327 nm; For ¹H NMR (CDCl₃, 600 MHz) and ¹³C NMR (CDCl₃, 150 MHz) spectra, see Table S4. HRESIMS *m*/*z* 308.2019 [M+Na]⁺ (calcd for C₁₉H₂₇NONa, 308.1990).¹⁴

2-(*E-dec-1-enyl*)-4-quinolone (S11): colorless solid; UV-Vis (MeOH) λ_{max} 210 nm, 258nm, 309 nm, 334 nm; For ¹H NMR (CDCl₃, 600 MHz) and ¹³C NMR (CDCl₃, 150 MHz) spectra, see Table S4. HRESIMS *m*/*z* 306.1913 [M+Na]⁺ (calcd for C₁₉H₂₅NONa, 306.1834).^{S4}

2-undecyl-4-quinolone (S12): colorless solid; UV-Vis (MeOH) λ_{max} 211 nm, 236nm, 314 nm, 325 nm; ¹H NMR (CDCl₃, 600 MHz) and ¹³C NMR (CDCl₃, 150 MHz) spectra matched well (Table S4) with literature data.¹⁰ HRESIMS *m*/*z* 300.2335 [M+H]⁺ (calcd for C₂₀H₃₀NO, 300.2322).

2-(*E-undec-1-enyl*)-4-quinolone (S13): colorless solid; UV-Vis (MeOH) λ_{max} 210 nm, 258 nm, 309 nm, 334 nm; ¹H NMR (CDCl₃, 600 MHz) and ¹³C NMR (CDCl₃, 150 MHz) spectra matched well (Table S4) with literature data.^{S5} HRESIMS *m*/*z* 298.2177 [M+H]⁺ (calcd for C₂₀H₂₈NO, 298.2165).

2-(*Z*-undec-4-enyl)-4-quinolone (S14): colorless solid; UV-Vis (MeOH) λ_{max} 211 nm, 238 nm, 316 nm, 327 nm; ¹H NMR (CDCl₃, 600 MHz) and ¹³C NMR (CDCl₃, 150 MHz) spectra matched well (Table S4) with literature data.¹⁰ HRESIMS *m*/*z* 298.2176 [M+H]⁺ (calcd for C₂₀H₂₈NO, 298.2165).

2-(3-(2-hexylcyclopropyl)propyl)-4-quinolone (S15): colorless solid; UV-Vis (MeOH) λ_{max} 211 nm, 238 nm, 316 nm, 327 nm; ¹H NMR (CDCl₃, 600 MHz) and ¹³C NMR (CDCl₃, 150 MHz) spectra matched well (Table S5) with literature data.¹⁰ HRESIMS *m*/*z* 312.2388 [M+H]⁺ (calcd for C₂₁H₃₀NO, 312.2322).

2-heptyl-1-hydroxyl-4-quinolone (S16): colorless solid; UV-Vis (MeOH) λ_{max} 216 nm, 242nm, 328 nm; ¹H NMR (CDCl₃, 600 MHz) and ¹³C NMR (CDCl₃, 150 MHz) spectra matched well (Table S5) with literature data.⁷ HRESIMS *m*/*z* 260.1639 [M+H]⁺ (calcd for C₁₆H₂₂NO₂, 260.1651).

2-nonyl-1-hydroxyl-4-quinolone (S17): colorless solid; UV-Vis (MeOH) λ_{max} 214 nm, 242nm, 330 nm, 336 nm; ¹H NMR (methanol- d_4 , 600 MHz) and ¹³C NMR (methanol- d_4 , 150

MHz) data matched well (Table S5) with literature data.⁷ HRESIMS m/z 288.1969 [M+H]⁺ (calcd for C₁₈H₂₆NO₂, 288.1964).

2-(*Z*-undec-4-enyl)-1-hydroxyl-4-quinolone (S18): colorless solid; UV-Vis (MeOH) λ_{max} 214 nm, 242 nm, 330 nm, 338 nm; ¹H NMR (methanol- d_4 , 600 MHz) and ¹³C NMR (methanol- d_4 , 150 MHz) matched well (Table S5) with literature data.¹⁰

3-heptyl-3-hydroxy-1,2,3,4-tetrahydroquinoline-2,4-dione (S19): colorless solid; UV-Vis (MeOH) λ_{max} 236 nm, 256 nm, 338 nm; ¹H NMR (CDCl₃, 600 MHz) and ¹³C NMR (CDCl₃, 150 MHz) spectra matched well (Table S5) with literature data.^{S6} HRESIMS *m*/*z* 298.1414 [M+Na]⁺ (calcd for C₁₆H₂₁NNaO₃, 298.1419).

1-hydroxyphenazine (**S20**): yellow solid; UV-Vis (MeOH) λ_{max} 202 nm, 262 nm, 368 nm; ¹H NMR (CDCl₃, 600 MHz) and ¹³C NMR (CDCl₃, 150 MHz) spectra matched well (Table S6) with literature data.^{S7} HRESIMS *m*/*z* 197.0715 [M+H]⁺ (calcd for C₁₂H₉N₂O, 197.0715).

Phenazine-1-carboxylic acid (**S21**): chartreuse solid; UV-Vis (MeOH) λ_{max} 207 nm, 254 nm, 370 nm; ¹H NMR (CDCl₃, 600 MHz) and ¹³C NMR (CDCl₃, 150 MHz) spectra matched well (Table S6) with literature data.¹⁰ HRESI(-)MS *m*/*z* 179.0571 [M-COOH]⁻ (calcd for C₁₂H₇N₂, 179.0615).

Phenazine-1-carboxamide (**S22**): green solid; UV-Vis (MeOH) λ_{max} 204 nm, 248 nm, 368 nm; ¹H NMR (CDCl₃, 600 MHz) and ¹³C NMR (CDCl₃, 150 MHz) spectra matched well (Table S6) with literature data.¹⁰ HRESIMS *m/z* 246.0639 [M+Na]⁺ (calculated for C₁₃H₉N₃ONa, 246.0643).

N-(2-hydroxyphenyl)-acetamide (S23): colorless solid; UV-Vis (MeOH) λ_{max} 204 nm, 216 nm, 240 nm, 280 nm; ¹H NMR (*d*₆-DMSO, 600 MHz) and ¹³C NMR (*d*₆-DMSO, 150 MHz) matched well (Table S6) with literature data.^{S8} HRESIMS *m*/*z* 174.0525 [M+Na]⁺ (calcd for C₈H₉NO₂Na, 174.0531).

Synthetic procedures

3-(*Methylthio*)acrylic acid. 20% Sodium thiomethoxide aqueous solution (1001.0 mg, 2.86 mmol) was added to stirred propiolic acid (200.0 mg, 2.86 mmol). The mixture was stirred overnight at room temperature. Hydrochloric acid (1 M) was added to adjust the pH to 2-3, and the mixture was extracted with dichloromethane (20×2 mL). The organic layer was dried (MgSO₄) and concentrated to give a pale yellow solid, which was shown by ¹H NMR to be exclusively 3-methylthioacrylic acid (189.0 mg, 56%, Z/E = 20:3).^{S9} Major isomer Z ¹H NMR (400 MHz, CDCl₃) δ 11.49 (br, 1H), 7.20 (d, 10.2 Hz, 1H), 5.86 (d, 10.2 Hz, 1H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 19.7, 112.8, 155.5, 172.5.

Phenylacetic acid. Sodium hydroxide solution (1 M, 5 ml) was added to methyl phenyl acetate (0.50 g, 3.3 mmol) in 10 ml methanol. The mixture was stirred at 70 °C for 2 hours. The solution was cooled to room temperature and hydrochloric acid (1 M) was added to adjust the pH to 2-3, and the mixture was extracted with dichloromethane (20×2 mL). The organic layer was dried (MgSO₄) and concentrated to give a colorless solid (0.44 g, 98%). ¹H NMR (400 MHz, CDCl₃) δ 9.8 (br, 1H), 7.30-7.38 (m, 5H), 3.67 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 40.9, 127.1, 128.4, 129.2, 133.1, 177.9.

Feeding studies.

Three cultures of *Pseudomonas aeruginosa* BD06-03 were grown in 50 mL ISP4 liquid medium. One flask was retained as a control cuture, to the other two were added 15 mg 3-(methylthio)acrylic acid and 15 mg phenylacetic acid, respectively. The cultures were incubated in a rotary incubator shaker for 4 days at 30 °C and 200 rpm. After four days, 1 g HP20 resin was added to adsorb the secondary metabolites produced by the microbes and incubated for another day. Through filtration, the resin was separated from the medium, before methanol was used to extract secondary metabolites adsorbed by the resin, and the organic extracts subjected to HPLC analysis.

No significant differences in the HPLC profiles of the three cultures were observed (Figure S3).

Scheme S1. Possible biosynthetic origin of quinolones 1 and 4.

Figure S3. HPLC-DAD analysis of methanolic extracts from precursor feeding studies for *P. aeruginosa* BD06-03. a) control culture; b) feeding study with 125 mM 3-(methylthio)acrylic acid; c) feeding study with 125 mM phenylacetic acid; d) standard for compound **1**; e) standard for compound **4**.

MTT Assay

The MTT assay was performed on HeLa cell line which was cultured at 37 $^{\circ}$ C under 5% CO₂ in DMEM supplemented with 10% FBS. Cell counting was performed manually by using haemocytometer and Nikon Eclipse TS100 microscope. Upon reaching 80-90% confluency, the cells were diluted with fresh media and seeded into a 96-well plate (4000 cells per well) and incubated for 24 h. After 24 h the media was removed and premixed concentrations of test compounds and media were added to the plate. The test compounds were dissolved in DMSO so that the concentration of DMSO was kept at 0.5%. DMSO (0.5%) dissolved in media was used as the negative control while cisplatin was used as the positive control. After 72 h, the media was replaced with fresh 0.5 mg/mL MTT dissolved in PBS and incubated for 4 h. The MTT solution was then replaced with 100 µL of DMSO to dissolve formazan crystals formed by metabolically active living cells.^{\$10} Absorbance values at 490 nm were measured using a plate reader. The percentage of viable cells was calculated from the ratio of $\Delta A490$ (between the sample and a blank with no cells and no drug) to $\Delta A490$, reference (between a control with no drug and the blank).^{S11} To determine IC₅₀ values, the average percentage of viable cells was plotted against the corresponding concentration test compounds and the data fit to a sigmoidal equation using GraphPad Prism 6.0.

Test Compound	IC50 (µg/ml)
1	86.7
2	n/a
3	n/a
4	n/a
6	n/a
S1	n/a
S2	n/a
S 3	n/a
S 5	n/a
S7	n/a
S8	158
S9	n/a
S13	n/a
S14	n/a
S16	168
S17	154
S18	n/a
Cisplatin	86

Table S1. Cytotoxic activity of selected compounds against HeLa cells.

n/a =not active at 250 µg/ml

Disc Diffusion Assay

The antimicrobial effects of compounds S1, S2, S7, S8, S12, S13, S14, S21 were assessed using well diffusion assays. 200 μ L suspensions (approximate 1 × 107 CFU / mL) of the test microbes (Table S2) were spread across the agar surface of petri dishes. Wells were punched into the agar using a sterile pipette tip. Test substance (10 μ L, dissolved in DMSO at a concentration of 2 mg/mL) was added into the wells and incubated at suitable temperature for 24 h. DMSO was used as negative control, and ampicillin (10 μ L, 2 mg/mL) used as positive control. Anti-microbial activity was evaluated by measuring the diameter of the zone of inhibition. Weak activity was observed against two *Staphylococcus* species (Table S3).

Table S2. Microbes used in antimicrobial testing								
ATCC® No.	Species	Media	Temperature					
12600	Staphylococcus aureus	NB	37°C					
14990	Staphylococcus epidermidis	NB	37°C					
25175	Streptococcus mutans	BHI	37°C					
13525	Pseudomonas fluorescens	NB	26°C					
8043	Enterococcus hirae	BHI	37°C					
25238	Moraxella catarrhalis	BHI	37°C					
15692	Pseudomonas aeruginosa	NB	37°C					
6633	Bacillus subtilis subsp.spizizenii	BHI	30°C					
ATCC® No.	Species	Media	Temperature					
76615	Candida albicans	YM	25°C					
22019	Candida parapsilosis	YM	25°C					
10571	Candida rugosa	YM	25°C					
750	Candida tropicalis	YM	25°C					
34103	Rhizopus stolonifer	PDA	25°C					
16888	Aspergillus niger	PDA	30°C					
2601	Saccharomyces kudriavzevii	YM	30°C					
10106	Penicillium chrysogenum	PDA	25°C					

Table S3. Zones of inhibition of selected of	compounds	against	Staphylococcus
--	-----------	---------	----------------

Comp.	Staphylococcus aureus	Staphylococcus epidermidis
	ATCC 12600	ATCC 14990
S1	N/A	N/A
S2	10	N/A
S7	N/A	N/A
S8	11	11
S12	N/A	N/A
S13	11	11
S14	14	14
S21	N/A	N/A
Penicillin	39	39

	S1 (CDCl ₃)		S2 (CDCl ₃)		S	3 (CDCl ₃)	S4 (CDCl ₃)		
position	$\delta_{\rm C}$, type	$\delta_{\rm H}$, (J in Hz)	$\delta_{\rm C}$, type	δ_{H} , (<i>J</i> in Hz)	$\delta_{\rm C}$, type	δ_{H} , (J in Hz)			
1	NH	12.40, s	NH	10.23, s	NH	8.19, br	NH	8.01 (br)	
2	155.3, C	-	147.8, C	-	150.9, C	-	152.2, C	-	
3	108.2, CH	6.24, s	107.6, CH	6.32, s	109.4, CH	6.18, s	109.5, CH	6.19, s	
4	178.9, CO	-	179.6, CO	-	179.4, CO	-	177.2, CO	-	
4a	125.0, C	-	125.4, C	-	125.1, C	-	129.1, C	-	
5	125.3, CH	8.36, d (8.1)	125.8, CH	8.34, d (8.1)	126.2, CH	8.34, d (8.1)	126.3, CH	8.35, d (8.0)	
6	123.5, CH	7.32, t (7.5)	123.8, CH	7.31, dt (8.0, 4.1)	124.0, CH	7.32, t (7.5)	123.6, CH	7.32, t (7.5)	
7	131.7, CH	7.58, t (7.6)	132.1, CH	7.57, d (3.8)	132.1, CH	7.57, t (7.6)	132.0, CH	7.57, t (7.5)	
8	118.5, CH	7.79, d (8.4)	117.9, CH	7.57, d (3.8)	117.1, CH	7.29	117.0, CH	7.28, d (8.2)	
8a	140.7, C	-	140.2, C	-	1395, C	-	139.8, C	-	
1'	34.4, CH ₂	2.69, t (7.8)	124.2,CH	6.28, d (16.0)	37.4, CH ₂	3.36, d (7.0)	34.6, CH ₂	2.63, t (7.9)	
2'	31.6, CH ₂	1.71, p (7.7)	139.2, CH	6.64, dt (15.3, 6.9)	123.2, CH	5.54, dt (16.0, 7.5)	28.6, CH ₂	1.73, m	
3'					137.6, CH	5.78, dt, (14.1,	27.1, CH ₂		
	29.2, CH ₂	1.09-1.34, m	33.1, CH ₂	2.22, q (7.0)		6.6)		1.23-1.41, m	
4'	29.0, CH ₂	1.09-1.34, m	28.4, CH ₂	1.43, p (7.1)	32.2, CH ₂	2.12, q (7.1)	31.5, CH ₂	1.23-1.41, m	
5'	29.0, CH ₂	1.09-1.34, m	31.4, CH ₂	1.22-1.32, m	31.4, CH ₂	1.29-1.47, m	38.7, CH ₂	1.23-1.41, m	
6'	22.6, CH ₂	1.09-1.34, m	22.5, CH ₂	1.22-1.32, m	22.3, CH ₂	1.29-1.47, m	28.0, CH	1.55, m	
7'	14.0, CH ₃	0.80, t (7.0)	14.0, CH ₃	0.85, t (6.9)	13.9, CH3	0.93, t (7.2)	22.7, CH ₃	0.85, d (6.6)	
8'							22.7, CH ₃	0.85, d (6.6)	

Table S4. ¹H NMR (600 MHz) and ¹³C NMR (150 MHz) assignments of compounds S1-S4

	S5 ^a (CDCl ₃)		S6 ^b (CDCl ₃)		S7 ^a (S7 ^a (CDCl ₃)		S8 ^a (CDCl ₃)		S9 ^a (CDCl ₃)	
position	$\delta_{\rm C}$, type	$\delta_{\rm H}$, (<i>J</i> in Hz)	$\delta_{\rm C}$, type	$\delta_{\rm H}, (J \text{ in Hz})$	$\delta_{\rm C}$, type	δ_{H} , (<i>J</i> in Hz)	$\delta_{\rm C}$, type	δ_{H} , (J in Hz)	$\delta_{\rm C}$, type	δ_{H} , (J in Hz)	
1	NH	11.36, br	NH	9.06, br	NH	11.07, br	NH	9.85, br	NH	9.83, br	
2	154.4, C	-	154.8, C	-	154.4, C	-	152.7, C	-	151.4, C	-	
3	108.4, CH	6.22, s	108.2, CH	6.29, s	108.5, CH	6.22, s	107.7, CH	6.32, s	109.8, CH	6.21, s	
4	178.9, CO	-	179.3, CO	-	178.9, C0	-	179.1,CO	-	179.3, CO	-	
4a	125.1, C	-	126.2, C	-	125.1, C	-	124.1, C	-	125.1, C	-	
5	125.6, CH	8.35, d (8.1)	126.6, CH	8.33, d (7.9)	125.6, CH	8.35, d (8.1)	125.9, CH	8.34, d (8.1)	126.7, CH	8.34, d (8.0)	
6	123.5, CH	7.32, t (7.5)	125.7, CH	7.31, t (7.5)	123.5, CH	7.32, t (7.5)	123.6, CH	7.31, t (7.5)	124.4, CH	7.32, t (7.5)	
7	131.7, CH	7.57, t (7.3)	132.3, CH	7.57, t (7.0)	131.8, CH	7.58, t (8.2)	132.0, CH	7.57, t (7.6)	132.6, CH	7.56, t (6.6)	
8	118.0, CH	7.66, d (8.1)	123.7, CH	7.42, d (7.7)	118.0,CH	7.63, d (8.3)	117.6, CH	7.52, d (8.2)	118.1, CH	7.45, m	
8a	140.3, C	-	139.7, C	-	140.3, C	-	139.8, C	-	140.2, C	-	
1'	34.4, CH ₂	2.67, t (7.6)	124.3, CH	6.25, d (15.8)	34.4, CH ₂	2.67, t (7.8)	125.5, CH	6.26, d (16.0)	37.4, CH	3.39, s	
2'	$31.7, CH_2$	1.65-1.82, m	138.6, CH	6.55, m	31.8, CH ₂	1.72, p (7.7)	138.8, CH	6.61, dt (15.9, 6.9)	123.9, CH	5.54, m	
3'	29.2, CH ₂	1.65-1.82, m	33.2, CH ₂	2.26, q (6.5)	29.4, CH ₂	1.14-1.36, m	33.0, CH ₂	2.23, qd (7.1, 1.6)	137.7, CH	5.71, dt (13.8, 6.5)	
4'	29.1, CH ₂	1.13-1.35, m	31.8, CH ₂	1.47, m	29.3, CH ₂	1.14-1.36, m	31.7, CH ₂	1.44, m	33.3, CH ₂	2.04, q (7.1)	
5'	29.0, CH ₂	1.13-1.35, m	29.0, CH ₂	1.23-1.37, m	29.2, CH ₂	1.14-1.36, m	29.1, CH ₂	1.18-1.33, m	29.2, CH ₂	1.36, m	
6'	$28.8, CH_2$	1.13-1.35, m	28.8, CH ₂	1.23-1.37, m	29.1, CH ₂	1.14-1.36, m	29.0, CH ₂	1.18-1.33, m	29.1, CH ₂	1.16-1.32, m	
7'	22.5, CH ₂	1.13-1.35, m	22.7, CH ₂	1.23-1.37, m	28.8, CH ₂	1.14-1.36, m	28.6, CH ₂	1.18-1.33, m	31.8, CH ₂	1.16-1.32, m	
8'	14.0, CH ₃	0.83, t (7.1)	14.2, CH ₃	0.88, t (6.8)	22.6, CH ₂	1.14-1.36, m	22.6, CH ₂	1.18-1.33, m	22.9, CH ₂	1.16-1.32, m	
9'					14.0, CH ₃	0.85, t (7.1)	14.0, CH ₃	0.87, t (6.9)	14.3, CH ₃	0.87, t (6.7)	

Table S5. ¹H NMR (600 MHz) and ¹³C NMR assignments of compounds S5-S9

^a 125 MHz for ¹³C NMR, ^b 100 MHz for ¹³C NMR.

	position $\frac{\textbf{S10} (\text{CDCl}_3)}{\delta_{\text{C}}, \text{type} \delta_{\text{H}}, (J \text{ in Hz}) \delta_{\text{C}}, \text{type}}$		S1	1 (CDCl ₃)	S12 (S12 (CDCl ₃)		S13 (CDCl ₃)		S14 (CDCl ₃)	
position			δ_{H} , (<i>J</i> in Hz)	$\delta_{\rm C}$, type	$\delta_{\rm H}$, (J in Hz)	$\delta_{\rm C}$, type	$\delta_{ m H}$, (J in Hz)	$\delta_{\rm C}$, type	$\delta_{ m H}$, (J in Hz)		
1	NH	11.16, br	NH	10.02, br	NH	11.5, br	NH	12.5, br	NH	11.57, br	
2	153.2, C	-	n/o	-	155.6, C	-	148.5, C	-	154.6 C	-	
3	108.9, CH	6.41, s	108.0, CH	6.48, s	107.8, CH	6.35, s	104.3, CH	6.75, s	108.5, CH	6.24, s	
4	178.5, CO	-	n/o	-	177.9, CO	-	178.1, CO	-	179.1, CO	-	
4a	125.5, C	-	n/o	-	124.3, C	-	125.7, C	-	125.2, C	-	
5	126.0, CH	8.36, d (8.1)	126.3, CH	8.32, d (8.1)	125.3, CH	8.36, d (8.1)	124.8, CH	8.33, d (8.2)	125.6, CH	8.36, d (8.1)	
6	123.7, CH	7.39, t (7.5)	123.8, CH	7.35, t (7.4)	124.1, CH	7.37, t (7.4)	125.0, CH	7.42, t (7.6)	123.6, CH	7.32, t (7.5)	
7	131.9, CH	7.63, t (7.4)	132.3, CH	7.60, t (7.5)	132.1, CH	7.60, t (7.5)	132.8, CH	7.64, t (7.6)	131.8, CH	7.57, t (7.5)	
8	117.3, CH	7.78, d (4.5)	117.2, CH	7.67, d (6.4)	118.5, CH	7.78, d (6.6)	119.1, CH	8.11, d (8.0)	118.2, CH	7.67, d (8.3)	
8a	139.7, C	-	n/o	-	140.5, C	-	140.5, C	-	140.5, C	-	
1'	34.5, CH ₂	2.74, t (7.8)	124.2, CH	6.34, d (15.9)	34.5, CH ₂	2.73, t (7.3)	123.1, CH	6.53, d (15.8)	34.0, CH ₂	2.70, t (7.9)	
2'	28.6, CH ₂	1.72, q (7.7)	138.5, CH	6.62, dt (14.3, 6.7)	$29.1, CH_2$	1.73, p (7.8)	143.0, CH	6.82, dt (14.3, 6.7)	28.9, CH ₂	1.80, p (7.4)	
3'	29.2, CH ₂	1.12-1.36, m	33.1, CH ₂	2.19, q (7.0)	29.2, CH ₂	1.16-1.34, m	33.3, CH ₂	2.12, q (7.1)	26.7, CH ₂	2.07, q (7.3)	
4'	29.5, CH ₂	1.12-1.36, m	28.8, CH ₂	1.42, p (6.8)	29.6, CH ₂	1.16-1.34, m	28.7, CH ₂	1.36, m	128.1, CH	5.26, m	
5'	29.4, CH ₂	1.12-1.36, m	29.2, CH ₂	1.17-1.34, m	29.6, CH ₂	1.16-1.34, m	31.9, CH ₂	1.16-1.28, m	131.4, CH	5.34, m	
6'	29.3, CH ₂	1.12-1.36, m	29.3, CH ₂	1.17-1.34, m	29.6, CH ₂	1.16-1.34, m	$29.5, CH_2$	1.16-1.28, m	27.3, CH ₂	1.92, q (7.2)	
7'	29.3, CH ₂	1.12-1.36, m	29.4, CH ₂	1.17-1.34, m	29.5, CH ₂	1.16-1.34, m	29.5, CH ₂	1.16-1.28, m	29.5, CH ₂	1.12-1.33, m	
8'	31.9, CH ₂	1.12-1.36, m	31.9, CH ₂	1.17-1.34, m	29.3, CH ₂	1.16-1.34, m	29.5, CH ₂	1.16-1.28, m	29.1, CH ₂	1.12-1.33, m	
9'	22.7, CH ₂	1.12-1.36, m	22.7, CH ₂	1.17-1.34, m	31.9, CH ₂	1.16-1.34, m	29.5, CH ₂	1.16-1.28, m	31.8, CH ₂	1.12-1.33, m	
10'	14.1, CH ₃	0.85, t (7.1)	14.1, CH ₃	0.87, t (6.9)	28.9, CH ₂	1.16-1.34, m	22.7, CH ₂	1.16-1.28, m	22.6, CH ₂	1.12-1.33, m	
11'					14.2, CH ₃	0.85, t (7.1)	14.2, CH ₃	0.85, t (7.1)	14.1, CH ₃	0.84, t (7.1)	

Table S6. ¹H NMR (600 MHz) and ¹³C NMR (150 MHz) assignments of compounds S10-S14

 Table S7. ¹H and ¹³C NMR data of compounds S15-S19

.,.	S15 (CDCl ₃)		S16 (Methanol- d_4)		S17 (S17 (Methanol- d_4)		S18 (Methanol- d_4)		S19 (CDCl ₃)	
position	$\delta_{\rm C}$, type	$\delta_{ m H}$, (J in Hz)	$\delta_{\rm C}$, type	$\delta_{\rm H}$, (<i>J</i> in Hz)	$\delta_{\rm C}$, type	$\delta_{ m H}$, (J in Hz)	$\delta_{\rm C}$, type	δ_{H} , (J in Hz)	$\delta_{\rm C}$, type	$\delta_{\rm H}$, (<i>J</i> in Hz)	
1	NH	8.49, br	Ν	-	Ν	-	Ν	-	NH	9.76, br	
2	152.6, C	-	156.4, C	-	156.4, C	-	156.0, C	-	173.9, CO	-	
3	109.2, CH	6.19, s	107.5, CH	6.32, s	107.5, CH	6.34, s	107.5,CH	6.34, s	82.3, C	-	
4	179.2, CO	-	173.9, CO	-	174.0, CO	-	174, CO	-	195.5, CO	-	
4a	125.5, C	-	125.5, C	-	125.5, C	-	125.7, C		119.1, C	-	
5	126.3, CH	8.35, dd (8.2, 1.4)	125.8, CH	8.25, d (8.0)	125.9, CH	8.26, dd (8.0, 1.0)	125.8, CH	8.26, d, (8.0)	127.8, CH	7.89, d (7.6)	
6	123.6, CH	7.32, t (7.4)	125.9, CH	7.49, t (7.6)	126.0, CH	7.51, t (7.4)	125.9, CH	7.49, t (7.7)	124.0, CH	7.17, t (7.6)	
7	131.9, CH	7.57, t (7.1)	133.6, CH	7.79, t (7.6)	133.6, CH	7.81, t (7.5)	133.4, CH	7.79, t (7.7)	136.4, CH	7.57, t (7.7)	
8	116.9, CH	7.32	116.8, CH	8.08, d (8.6)	116.9, CH	8.11 d (8.7)	117.2, CH	8.14, d (8.6)	116.8, CH	7.12, d (7.3)	
8a	139.7, C	-	142.0, C	-	142.0, C		142.1, C		140.3, C	-	
1'	34.4, CH ₂	2.67, q (7.0)	32.6, CH ₂	2.90, t (7.6)	32.6, CH ₂	2.93, t (8.0)	32.2, CH ₂	2.95, t (7.6)	41.1, CH ₂	1.84-1.96, m	
2'	28.4, CH ₂	1.85, p (7.6)	28.8, CH ₂	1.76, m	28.8, CH ₂	1.78, m	28.8, CH2	1.85, m	22.7, CH ₂	1.35-1.45, m	
3'	28.0, CH ₂	1.53, m	30.4, CH ₂	1.20-1.50, m	33.1, CH ₂	1.31-1.46, m	27.8, CH ₂	2.21, m	31.6, CH ₂	1.10-1.26, m	
4'	15.6, CH	0.69, m	32.9, CH ₂	1.20-1.50, m	30.6, CH ₂	1.31-1.46, m	129.7, CH	5.44, m	29.2, CH ₂	1.10-1.26, m	
5'	15.6, CH	0.69, m	30.1, CH ₂	1.20-1.50, m	30.5, CH ₂	1.31-1.46, m	132.1, CH	5.44, m	28.9, CH ₂	1.10-1.26, m	
6'	28.3, CH ₂	1.20-1.41, m	23.7, CH ₂	1.20-1.50, m	30.4, CH ₂	1.31-1.46, m	28.3, CH ₂	2.05, m	22.5, CH ₂	1.10-1.26, m	
7'	30.0, CH ₂	1.20-1.41, m	14.4, CH ₃	0.90, t (6.9)	30.4, CH ₂	1.31-1.46, m	32.9, CH ₂	1.2-1.4, m	14.0, CH ₃	0.82, t	
8'	29.4, CH ₂	1.20-1.41, m			23.8, CH ₂	1.31-1.46, m	30.8, CH ₂	1.2-1.4, m	OH	3.93, br	
9'	32.0, CH ₂	1.20-1.41, m			14.4, CH ₃	0.9, t (7.1)	30.0, CH ₂	1.2-1.4, m			
10'	22.7, CH ₂	1.20-1.41, m					23.7, CH ₂	1.2-1.4, m			
11'	14.1, CH ₃	0.88, t (7.1)					14.4, CH ₃	0.88, t (6.8)			
CH ₂	11.0, CH ₂	-0.29, m; 0.61, m									

monition	S20 (Methanol- d_4)		S21 (CDCl ₃)		8	S22 (CDCl ₃)	nosition	S23 (DMSO- <i>d</i> ₆)	
position	$\delta_{\rm C}$, type	$\delta_{\rm H}$, (J in Hz)	$\delta_{\rm C}$, type	$\delta_{\rm H}$, (J in Hz)	$\delta_{\rm C}$, type	$\delta_{\rm H}$, (J in Hz)	position	$\delta_{\rm C}$, type	$\delta_{\rm H}$, (J in Hz)
1	154.6, C	-	125.1, C	-	129.1, C	-	1	126.5, C	-
2	111.1, CH	7.19, dd (7.5, 1.0)	137.4, CH	8.98, d (7.0)	136.2, CH	9.02, dd (7.1, 1.5)	2	148.4, C	-
3	133.4, CH	7.78, dd (8.9, 7.4)	130.2, CH	8.29, d (8.6)	130.1, CH	7.98, dd (8.7, 7.2)	3	116.1, CH	6.84, d (8.1)
4	120.0, CH	7.68, dd (9.0, 0.8)	135.1, CH	8.53, d (8.7)	134.6, CH	8.44, dd (8.7, 1.5)	4	124.7, CH	6.92, t (8.3)
4a	145.0, C	-	144.1, C	-	143.7, C	-	5	122.4, CH	6.74, t (7.6)
5a	144.5, C	-	143.4, C	-	143.4, C	-	6	118.9, CH	7.66, d (8.1)
6	131.6, CH	7.86-7.94, m	133.2, CH	8.01, m	131.3, CH	7.90-7.95, m	1-CH ₃	23.7, CH3	2.08, s
7					129.3, CH		1-CON	169.1, CO	
	130.6, CH	8.31, d (8.6)	128.0, CH	8.01, m		8.25, m	Н		9.29, s
8	129.8, CH	8.18, dd (8.3, 1.3)	130.1, CH	8.35, d (8.6)	130.0, CH	8.30, m	2-OH	-	9.83, s
9	132.4, CH	7.86-7.94, m	131.7, CH	8.01, m	132.0, CH	7.90-7.95, m			
9a	143.0, C		140.1, C	-	141.7, C	-			
10a	137.2, C		139.9, C	-	140.0, C	-			
1-CO			165.8, CO	15.53, s	166.7, CO	10.73, br s; 6.25, br s			

Table S8. ¹H NMR (600 MHz) and ¹³C NMR (150 MHz) assignments of compound S20-S23

HRESI MS spectra of compound ${\bf 2}$

- S23 -

- S26 -

HRESI MS spectra of compound 4

- S29 -

HRESI MS spectra of compound 5

¹³C-NMR (100 MHz, methanol- d_4) spectrum of compound **5**

HRESI MS spectra of compound 6

- *S36* -

HRESI MS spectra of compound $\mathbf{S1}$

HRESI MS spectra of compound ${\bf S2}$

- S40 -

HMBC spectrum of compound ${\bf S2}$

- S44 -

HRESI MS spectra of compound S5

HRESI MS spectra of compound S6

HRESI MS spectra of compound S7

HRESI MS spectra of compound 14

- \$58 -

HRESI MS spectra of compound S10

HSQC spectrum of compound S11

HRESI MS spectra of compound $\mathbf{S12}$

HRESI MS spectra of compound S13

HRESI MS spectra of compound S14

- S72 -

HMBC spectrum of compound **S14**

HRESI MS spectra of compound S15

- *S*76 -

- S82 -

- S89 -

HRESI MS spectra of compound $\mathbf{S21}$

ADDITIONAL REFERENCES

- (S1) Woschek, A.; Mahout, M.; Mereiter, K.; etc. Synthesis. 2007, 4, 1517-1522.
- (S2) Diggle, S. P.; Lumjiaktase, P.; Dipilato, F.; Winzer, K.; Kunakorn, M.; Barrett, D. A.; Chhabra, S. R.;
- Cámara, M.; Williams, P. Chem. Biol. 2006, 13, 701–710.
- (S3) Li D.; Oku N.; Hasada A.; Shimizu M.; Igarashi Y. Beilstein J. Org. Chem. 2018, 14, 1446-1451.
- (S4) Brockmann, E. U.; Steil, D.; Bauwens, A.; Soltwisch, J.; Dreisewerd, K. Anal. Chem. 2019, 91, 15081-15089.
- (S5) Bultel-Poncé V.; Berge J.; Debitus C.; Nicolas J.; Guyot M. Mar. Biotechnol. 1999, 1, 384-390.
- (S6) Kitamura, S.; Hashizume, K.; Iida, T.; et al. J. Antibiot. (Tokyo). 1986, 39, 1160-1166.
- (S7) Vodnala, N.; Kaldhi, D.; Gupta, R.; et al. Chemistry. Select. 2016, 1, 5784-5788.
- (S8) Moreno-Corral, R.; Hopfl, H.; Machi-Lara, L.; et al. Eur. J. Org. Chem. 2011, 2148–2162.
- (S9) Ómarsdóttir, S.; Wang, X.; Liu, H.-B.; Duggan, B. M.; Molinski, T. F. J. Org. Chem. 2018, 83, 13670-13677.
- (S10) Gerlier, D.; Thomasset, N. J. Immunol. Methods 1986, 9, 457-463.
- (S11) Wang S.; Al-Soodani A. T.; Thomas G. C.; Buck-Koehntop B. A.; Woycechowsky K. J. *Bioconjugate Chem.* **2018**, *29*, 2332-2342.