Supporting Information

Correction to: "One-Pot Double Annulation Strategy for the Synthesis of Unusual Fused Bis-Heterocycles"

Shukree Abdul-Rashed, Georgios Alachouzos, William W. Brennessel and Alison J. Frontier*

Department of Chemistry, University of Rochester, 414 Hutchison Hall, 100 Trustee Road, Rochester, NY 14627-0216 (USA).
*Corresponding Author: alison.frontier@rochester.edu
Table of Contents Page
General Remarks S2
Experimental Details S3
General Method A for Sonogashira Reaction to Enynes 1a-e S3
General Method B for Sonogashira Reaction to Arenynes 1f-n, S1-S4 S4
Synthesis of Arenyne 1j S5
General Procedure C for the Synthesis of Hemiaminals 2,5-7, 17, and 18 S6
Synthesis of Hemiaminals 14-16, 19-21 S7
Full Optimization Series for Double Annulation Strategy S8
General Procedure D for the Preparation of Azepines (3) and Azocines (13) S9
Cyclization Reaction to Azepines 3a-c and Azocines 13a-c S11
Cyclization Reaction of Enyne and Arenyne Variants S12
Cyclization Reaction of Arenynes S1-4 S14
Cyclization Reaction of Arenyne 1n S15
Conformational Isomerism of Azepine 3n S16
Mechanistic Proposal for the Formation of Dihydropyran 3n' S17
Cyclization Reaction of Hemiaminal Variants S17
General Procedure E for the Synthesis of Racemic Secondary Alcohols 10-t S19
Synthesis of Enantiopure Secondary Alcohol (S)-1p S20
Cyclization Reaction of Secondary Alcohol Variants S21
Chromatograms of (+/-)-3p and-3p S23
X-Ray Crystal Data for Compounds 3n, 3n', and 3q S25
References S34

General Remarks

All reactions were carried out under an argon atmosphere in flame-dried glassware with magnetic stirring unless otherwise noted. Syringe needles used to dispense solvent were not flame-dried. Reagents were used as obtained from commercial suppliers without further purification. Tetrahydrofuran (THF), diethyl ether ($\mathrm{Et}_{2} \mathrm{O}$), methylene chloride (DCM), 1,2-dichloroethane (DCE), and toluene (PhMe) were purchased from Fisher and dispensed using the Glass Contour solvent purification system. Hydrocarbon-stabilized (ChromAR®) chloroform $\left(\mathrm{CHCl}_{3}\right)$ was purchased from Macron Fine Chemicals and was dried for at least 24 hours over activated $4 \AA$ molecular sieves before use in any reactions. Both $4 \AA$ molecular sieves used for drying solvent, and $5 \AA$ molecular sieves used as desiccants in certain reactions were purchased from Aldrich, stored in an oven and activated under high vacuum prior to use. Celite 545 was purchased from EMD. ACS grade hexanes, pentane and DCM were used for column chromatography. Thinlayer chromatography (TLC) was performed on pre-coated silica gel 60 F254 glass-supported plates from EMD, and visualization was performed with a UV lamp followed by staining with p-anisaldehyde solution followed by heating. Column chromatography was carried out on EM Science silica gel (60 A pore size, 230-400 mesh). Preparatory thinlayer chromatography (prep-TLC) was carried out using Analtech Uniplate F254 Prep-20x20 cm TLC plates. Highperformance liquid chromatography (HPLC) was performed using Prominence-i LC 2030 Plus with a chiral stationary phase column (Chiralpak AD-H, Daicel Corp, $0.46 \mathrm{~cm} \times 0.15 \mathrm{~cm}$). Deuterated chloroform was purchased from Cambridge Isotope Laboratories.
${ }^{1} \mathrm{H}$ NMR spectra of all starting materials were recorded at room temperature on a 500 MHz Bruker Avance spectrometer or a 400 MHz Bruker Avance spectrometer. For the exception of cyclization products azepines 3o-t, all ${ }^{1} \mathrm{H}$ spectra acquired for cyclization/annulation products were acquired at $55^{\circ} \mathrm{C}$ in CDCl_{3}. Chemical shifts are given in parts per million (ppm) referenced to solvent residual proton resonance ($\delta=7.26$ for CHCl_{3}). NMR data are reported as: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{dq}=$ doublet of quartets, $\mathrm{td}=$ triplet of doublets $)$, coupling constants (J) given in Hz , and integration. In cases where two stereoisomers are present, all chemical shifts from the major stereoisomer are listed and resonances corresponding
to the minor isomer are listed "(minor)." ${ }^{13} \mathrm{C}$ NMR spectra were recorded at room temperature for all starting materials on a 125 MHz Bruker Avance spectrometer with proton decoupling. For the exception of cyclization products azepines 3o-t, all ${ }^{13} \mathrm{C}$ spectra acquired for cyclization/annulation products were acquired at $55^{\circ} \mathrm{C}$ in CDCl_{3}. Chemical shifts are given in parts per million (ppm) from referenced to solvent carbon resonance ($\delta=77.16$ for CHCl_{3}). In cases where two stereoisomers/rotamers are present, chemical shifts from the minor isomer are reported followed by "(minor)." High resolution mass spectra (HRMS) were measured at the University of Rochester Mass Spectrometry Resource Lab. X-ray crystallography data were collected by the X-ray Crystallographic Facility of the University of Rochester, Rochester, NY 14627 (USA). X-ray crystallography data were collected by the X-ray Crystallographic Facility of the University of Rochester, Rochester, NY 14627 (USA)

Experimental Details

General method A for Sonogashira reaction to Enynes 1a-e:

Scheme S1. Sonogashira reaction scope of prepared enynes 1a-e.
A round-bottom flask was charged with a stir-bar and purged with argon multiple times. Triethylamine (adjusted so that the limiting reagent alkyne reaches a concentration of 0.2 M) was added and the solvent was degassed by sparging with argon through a long needle. $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ (0.02 equiv.), copper iodide (0.04 equiv.) and vinyl bromide (3 equiv.) were added successively, while still degassing. After 10 min of continued degassing, alkynyl alcohol (1 equiv.) was added dropwise. Degassing was ceased and the reaction was carried out at rt (unless otherwise mentioned) until consumption of starting material was observed by TLC, upon which an amount of $\mathrm{Et}_{2} \mathrm{O}$ (equal to the initial volume of triethylamine) was added. The reaction was filtered over Celite 545. The filtrate was transferred to a separating funnel and washed repeatedly (typically twice) with $1 \mathrm{Maq} . \mathrm{HCl}$, until the obtained aqueous layer was roughly pH 1 and all triethylamine was removed from the organic layer. The remaining organic layer was then washed with a saturated aqueous solution of NaHCO_{3} and water, and the organic layer was then dried with MgSO_{4} and filtered. The filtrate was concentrated and purified by column chromatography (typically eluting Hexanes/DCM) to obtain pure enyne starting materials.

Enynes 1a-e are literature compounds and their spectroscopic matches that of what has been reported in the literature. ${ }^{1}$

General Method B for Sonogashira Reaction to Arenynes 1f-n, S1-S4:

Scheme S2. Sonogashira reaction for the synthesis of arenynes $\mathbf{1 f}-\mathbf{m}$ and S1-S4.
A round-bottom flask was charged with a stir-bar and purged with argon multiple times. $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ (0.02 equiv.) and copper(I) iodide (0.04 equiv.) were added to the flask followed by reagent-grade triethylamine ($\mathrm{Et}_{3} \mathrm{~N}$) to reach a concentration of 0.2 M with respect to the limiting reagent. 3-iodoanisole (1.2 equiv.) was introduced to the stirring solution via syringe, and the mixture was degassed by sparging with argon through a long needle. After ten minutes of degassing, 4-pentyn-1-ol (1 equiv) was added dropwise, and the mixture immediately became cloudy with precipitate. Degassing was ceased, and the reaction was carried out at ambient temperature (unless otherwise indicated) until consumption of starting material was observed by TLC by staining with p-anisaldehyde, upon which an amount of $\mathrm{Et}_{2} \mathrm{O}$ (equal to the initial volume of triethylamine) was added. The reaction was filtered over Celite 545,
and the celite pad was washed with excess $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was transferred to a separatory funnel along with copious amounts of ice and washed with 2 M aq. HCl to remove $\mathrm{Et}_{3} \mathrm{~N}$. Once the aqueous layer reached a pH of approximately 1, the remaining organic layer was washed with a saturated aqueous solution of NaHCO_{3} followed by water, and the organic layer was then dried over MgSO_{4} and filtered. The filtrate was concentrated and purified by column chromatography (using a step gradient of 100% hexanes/DCM to $100 \% \mathrm{DCM} /$ hexanes) to obtain pure arenynes $\mathbf{1 f}-\mathbf{n}$ and S1-S4. It is essential to note that hexanes/EtOAc were insufficient in removing residual palladium impurities from the reaction mixture after column chromatography. Copious amounts of Hexanes/DCM should be first washed through the column in order to remove these contaminants before increasing the polarity of the column eluent to $100 \% \mathrm{DCM}$.

Arenyne starting materials $\mathbf{1 f}^{2}, \mathbf{1 g}^{3}, \mathbf{1 h}^{4}, \mathbf{1 i}^{2}, \mathbf{1 n}^{5}, \mathbf{1 k}^{5}, \mathbf{S 1}^{2}, \mathbf{S 2}{ }^{6}, \mathbf{S 3} \mathbf{3}^{7}, \mathbf{S} \mathbf{4}^{8}$ were all prepared by the listed procedure and their spectroscopic data matches that of the literature.

Arenyne 11: A yellow-orange oil (35 mg) was obtained in 35% yield. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{~s}, 1 \mathrm{H})$, $7.53(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.66(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.00-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{~s}(\mathrm{broad}), 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.9,145.3$, $127.9,127.5,122.9,121.2,108.1,107.0,94.4,75.8,62.0,31.5,16.5$. HRMS Calculated for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: $\mathrm{m} / \mathrm{z} 201.0916$, found: 201.0911

Arenyne 1m: Isolated as a white solid (151 mg) in 31% yield, m.p. $166^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.18(\mathrm{~m}, 2 \mathrm{H}), 3.93-3.83(\mathrm{~m}$, $2 \mathrm{H}), 2.60(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.97-1.86(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 140.4,126.4,126.4,123.4,123.2$, 120.9, 120.6, 120.3, 119.9, 113.8, 110.8, 97.3, 89.0, 82.3, 62.1, 31.6, 16.3. HRMS Calculated for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z} 250.1232$, found: 250.1227

Synthesis of Arenyne $\mathbf{1 j}^{\mathbf{9}}$

Scheme S3. Synthesis of arenyne $\mathbf{1 j}$ via Stille coupling of $\mathbf{S 5}$ with vinylstannane.
S5 (4 mmol, 1 equiv) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.12 \mathrm{mmol}, 3 \mathrm{~mol} \%)$ were introduced to a flamed-dried pressure tube charged with a magnetic stir bar and capped with a rubber septum. Following the addition of the solids, the headspace was purged with argon 3 times ($\sim 15 \mathrm{~min}$). Under the inert atmosphere, anhydrous toluene (5 mL) was subsequently added and allowed to stir for 15 minutes. Next, tributyl(vinyl)stannane ($5.2 \mathrm{mmol}, 1.3$ equiv) was added dropwise via syringe and the mixture was stirred at $90^{\circ} \mathrm{C}$ for 18 h . After cooling, the mixture was filtered through Celite while eluting with $\mathrm{Et}_{2} \mathrm{O}$ and evaporated under reduced pressure. The residue was then treated with 1 M HCl soln and EtOAc . The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine, dried with MgSO_{4}, filtered and then concentrated. The crude product was purified by column chromatography a step gradient of 100\% Hexanes/DCM to 100% DCM/Hexanes to obtain $\mathbf{1 j}$ as a brownish yellow oil ($350 \mathrm{mg}, 54 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.29(\mathrm{~m}, 4 \mathrm{H}), 6.68(\mathrm{dd}, J=17.7,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=10.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.82(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.90-1.83(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $137.0,136.4,131.8,126.2,123.2,114.5,90.1,81.3,62.0,31.5,16.2$. HRMS Calculated for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z}$ 187.1123, found: 187.1127

General Procedure C for the Synthesis of Hemiaminals 2, 5-7, 12, 17, and 18

Scheme S4. Synthesis of hemiaminals via General Procedure C.
General Protection Method: At $0{ }^{\circ} \mathrm{C}$, neat lactam (1 equiv) was added dropwise to a suspension of NaH (60% dispersion in mineral oil, 1.1 equiv) in dry THF (adjusted such that the limiting reactant reaches a concentration of 0.2 M in THF). After 1 h of stirring at $0^{\circ} \mathrm{C}$, the protecting group ($\mathrm{TsCl} \mathrm{Boc}_{2} \mathrm{O}, \mathrm{CBz}-\mathrm{Cl}, \mathrm{NsCl}$) (1.1 equiv) in THF (equal volume to the original THF volume) was added dropwise. The reaction was then allowed to warm to rt and stirred until completion as observed by TLC analysis (typically overnight, 16 h) Upon consumption of the lactam starting material, sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ (equal volume to the combined THF volume) was added, the mixture was transferred to a separatory funnel and extracted twice with EtOAc (both extractions equal to the volume of aqueous layer). The combined organic layer was dried over MgSO_{4} and concentrated. The crude product was purified by column chromatography using 60% Hexanes/EtOAc as the lead eluent or recrystallization in 9:1 Hexanes/EtOAc to afford pure protected lactam.

General DiBAL-H reduction method: To a flame-dried round bottom flask charged with a magnetic stir and protected lactam was added DCM (adjusted such that the limiting reactant reaches a concentration of 0.25 M) and cooled to -78 ${ }^{\circ} \mathrm{C}$. Following, a freshly prepared 1 M solution of DiBAL-H in toluene (1.2 equiv) was added dropwise to and the reaction was stirred at $-78^{\circ} \mathrm{C}$ until completion was observed by TLC analysis (typically a couple of hours). Upon completion the reaction was cooled to $0^{\circ} \mathrm{C}$ and few milliliters of water are added to quench the reaction (hydrogen gas evolves quite violently!). A $10 \% \mathrm{w} / \mathrm{v}$ aq. solution of Rochelle's salt (equal to the original volume of DCM) is added to the quenched stirring reaction and is allowed to stir further for 5 min . The reaction was transferred to a separatory funnel and the milky aqueous layer was extracted twice with DCM (both extractions equal to the volume of aqueous layer). The combined organic layer was dried over MgSO_{4} and concentrated. The crude product was purified by column chromatography using 60% Hexanes/EtOAc or recrystallized from EtOAc (refluxed to supersaturation) at $-20^{\circ} \mathrm{C}$ to yield an off-white crystalline product.

Hemiaminals $\mathbf{2}^{10}, \mathbf{1 2}^{11}, \mathbf{5}^{12}, \mathbf{6}^{13}$, and $\mathbf{7}^{14}, \mathbf{1 7}^{15}, \mathbf{1 8}^{16}$, were prepared by General Procedure C and their spectroscopic data matched that previously reported in the literature.

Synthesis of Hemiaminals 14-16, 19-21:

14

Preparation of hemiaminal 14: To solution of $2(1 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{OH}(5 \mathrm{~mL})$ was added p-toluenesulfonic acid $(0.5 \mathrm{mmol})$ and left to stir at room temperature for 24 hours and monitored by TLC analysis. Upon consumption of starting material, the reaction was quenched with aqueous NaHCO_{3} and extracted with DCM and dried with MgSO_{4}, filtered and concentrated to afford the crude product. The crude was purified via column chromatography 80% Hexane/EtOAc to afford the product as a clear oil (204 mg) in 80% yield. Characterization data match that which was previously reported. ${ }^{17}$

Preparation of hemiaminal 15: 1.0 mmol of phthalimides was stirred at $0^{\circ} \mathrm{C}$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ and THF $(10 \mathrm{~mL})$ for 10 min . NaBH4 $(1.0 \mathrm{mmol})$ was added slowly over $5-10 \mathrm{~min}$, the mixture was stirred at 0 ${ }^{\circ} \mathrm{C}$ until the N -substituted phthalimides disappeared (monitored by TLC). The reaction was quenched with water, and the mixture was extracted with ethyl acetate. The combined organic layers were dried 15 with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to afford a white solid (104 mg) in 70% yield. Characterization data match that which was previously reported. ${ }^{18}$

16

Preparation of hemiaminal 16: In a round bottom flask charged with a magnetic stir bar, 6-chlorohex-1-yne (4.5 mmol) was dissolved in 20 mL of DMF. Subsequently, 1.2 equivalents of phthalimide (5.4 mmol) was added in one portion followed by 1.5 equivalents $(6.75 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$, and 0.2 equivalents $(0.9 \mathrm{mmol})$ of potassium iodide. The yellowish suspension was heated at $70^{\circ} \mathrm{C}$ for 24 hours. The reaction was then cooled to room temperature and then cooled to room temperature. 70 mL of $\mathrm{H}_{2} \mathrm{O}$ was introduced to the reaction and extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 70 \mathrm{~mL})$. The combined organics were then washed with brine ($3 \times 70 \mathrm{~mL}$) to remove the DMF. Combined organics were dried over anhydrous MgSO_{4}, filtered and then concentrated to afford crude N -(5-Hexynyl)phthalimide which was used directly for the next step. Reduction of $N-(5-H e x y n y l)$ phthalimide (1.0 mmol) was carried out using an identical procedure for the synthesis of hemiaminal 15, affording 16 as a white solid (179 mg) in 78% yield over 2 steps (m.p. $\left.95-96^{\circ} \mathrm{C}\right) .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.39(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{~d}, J=11.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.34-4.08(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.35(\mathrm{~m}, 1 \mathrm{H}), 3.34-3.15(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.92(\mathrm{~s}, 1 \mathrm{H}), 1.78-$ $1.58(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.41(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CHCl}_{3}\right) \delta 167.5,143.9,132.2,131.3,129.6,123.2,123.0$, 83.9, 81.5, $68.8-68.3(\mathrm{~m}), 38.3,27.2,25.6,18.0$. HRMS Calculated for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z} 230.1181$, found: 230.1183

Preparation of hemiaminal 19: In a round bottom flask charged with a magnetic stir bar, bromobutane (4.5 mmol) was dissolved in 20 mL of acetone. Subsequently, 1.2 equivalents of succinimide (5.4 mmol) was added in one portion followed by 1.5 equivalents (6.75 mmol) of $\mathrm{K}_{2} \mathrm{CO}_{3}$, and 0.2 equivalents (0.9 mmol) of potassium iodide. The yellowish suspension was heated at $50^{\circ} \mathrm{C}$ for 24 hours. The reaction was
19 then cooled to room temperature and then cooled to room temperature. 70 mL of $\mathrm{H}_{2} \mathrm{O}$ was introduced to the reaction and extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 70 \mathrm{~mL})$. The combined organics were then washed with brine (3 x 70 mL) to remove the DMF. Combined organics were dried over anhydrous MgSO_{4}, filtered and then concentrated to afford crude N-butylsuccinimide which was used directly for the next step. Reduction of N-butylsuccinimide with NaBH_{4} using the identical procedure for the synthesis of hemiaminal $\mathbf{1 5}$, affording 19 as a clear oil $(118 \mathrm{mg}, 75 \%$ yield over 2 steps). Characterization data match that which was previously reported. ${ }^{19}$

20

Preparation of hemiaminal 20: To a solution of Hexan-1-ol (1 mmol) in 8 mL THF was added PPh_{3} $(1.1 \mathrm{mmol}), 1 H$-Pyrrole-2,5-dione $(1.1 \mathrm{mmol})$, and diisopropyl azidodicarboxylate (DIAD) $(1.2 \mathrm{mmol})$. The reaction mixture was left to stir at room temperature until consumption of starting material was observed by TLC (10 hours). Solvent was removed via rotatory evaporator and then partial redissolved in a 1:1 mixture of hexanes to diethyl ether. The suspension was then filtrated through a short Celite plug and the collected filtrate was concentrated and purified by column chromatography using 80% $\mathrm{Hex} / \mathrm{EtOAc}$ as the lead eluent to afford 1-hexyl-1H-Pyrrole-2,5-dione which was then reduced with NaBH_{4} using the identical procedure for the synthesis of 15, affording $\mathbf{2 0}$ as a clear oil ($97 \mathrm{mg}, 53 \%$ yield over 2 steps). Characterization data matched that which was previously reported. ${ }^{20}$

21

Preparation of hemiaminal 21: To a flame-dried flask containing a magnetic stir bar was added phthalimide (1 mmol) followed by $\mathrm{dry}_{\mathrm{Et}}^{2} \mathrm{O}$ and left to stir at room temperature for 10 minutes. Next, the flask was cooled to $0^{\circ} \mathrm{C}$ and $1.2 \mathrm{~mL}(1.2 \mathrm{mmol})$ of 1 M ethyl magnesium bromide (in THF) was added dropwise over 10 minutes. The reaction was monitored by TLC analysis and upon the observed consumption of starting material, the reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$, washed with brine, dried with MgSO_{4} filtered and concentrated to afford the crude product which was then purified by column chromatography using $50 \% \mathrm{Hex} / \mathrm{EtOAc}$ as the lead eluent to afford 21 as a white crystalline solid ($90 \mathrm{mg}, 51 \%$ yield). Characterization data match that which was previously reported. ${ }^{21}$

Full Optimization Series for Double Annulation Strategy:

Table S1. Full optimization series of the cyclization method with enyne 1a toward bicyclic scaffolds.

Entry	$1 \mathbf{1 a}$ equiv	R (hemiaminal)	Promoter (equiv)	Solvent $(0.1 \mathrm{M})$ (0.1M)	Time / Temp $\left({ }^{\circ} \mathrm{C}\right)$	Result (E/Z)
1	1.75	Ts (2)	Tf2NH (0.25)	CHCl_{3}	1 h/-20	$\begin{gathered} 82 \% \text { 3a (>19:1) } \\ 14 \% 11 \end{gathered}$
2	1.2	Ts (2)	Tf 2 NH (1.0)	CHCl_{3}	1 h/-20	91\% 3a (10:1)
3	1.2	Ts (2)	$\mathrm{Tf}_{2} \mathrm{NH}$ (0.25)	CHCl_{3}	1h/-20	94\% 3a (>19:1)
4	1.2	Ts (2)	TfOH (0.25)	CHCl_{3}	6h/-20	No reactivity
5	1.2	Ts (2)	TfOH (0.25)	CHCl_{3}	$1 \mathrm{~h} / 0$	$\begin{gathered} >95 \% \\ \text { deprotection of } \mathbf{1 1} \end{gathered}$
6	1.2	Ts (2)	Tf 2 NH (1.0)	DCM	$75 \mathrm{~min} /-20$	95\% 3a (>19:1)
7	1.2	Ts (2)	$\mathrm{Tf}_{2} \mathrm{NH}$ (0.25)	DCM	$75 \mathrm{~min} /-20$	97% 3a (>19:1)
8	1.2	Ts (2)	$\mathrm{Tf}_{2} \mathrm{NH}(0.25)$	THF	5h/-20	94\% 11
9	1.2	Ts (2)	Tf2NH (0.25)	$\mathrm{Et}_{2} \mathrm{O}$	5h / -20	$\begin{gathered} 44 \% 3 a(10: 1) \\ 50 \% 11 \end{gathered}$
10	1.2	Ts (2)	Tf2NH (0.25)	MTBE	$5 \mathrm{~h} /-20$	$\begin{gathered} 33 \% \text { 3a (5:1) } \\ 66 \% 11 \end{gathered}$
11	1.2	Ts (2)	Tf2NH (0.25)	CyCH_{3}	5h / -20	trace 3a $86 \% 11$
12	1.2	Ts (2)	$\mathrm{Tf}_{2} \mathrm{NH}$ (1.0)	Toluene	5h/-20	94\% 11
13	1.2	Boc (5)	$\mathrm{Tf}_{2} \mathrm{NH}$ (1.0)	DCM	1h/-20	(N/A) $8 \mathrm{a}^{[\mathrm{a}]}$
14	1.2	CBz (6)	$\mathrm{Tf}_{2} \mathrm{NH}$ (1.0)	DCM	1 h/-20	30\% 9a (>19:1)
15	1.2	Ns (7)	$\mathrm{Tf}_{2} \mathrm{NH}$ (1.0)	DCM	$10 \mathrm{~h} /-20$	$35 \% 10 a(>19: 1)$

[a] Decomposition under reaction conditions

3a: Purification by Prep TLC using $60 \% \mathrm{Hex} / \mathrm{EtOAc}$ (1% triethylamine) afforded a clear oil was obtained in 97% yield (70 mg). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.48(\mathrm{q}, J=6.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.19(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.39(\mathrm{~m}, 1 \mathrm{H}), 2.99$ (t (broad), J $=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.34-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.12-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.77(\mathrm{~m}, 3 \mathrm{H}), 1.60(\mathrm{dd}, J=12.3,5.6$ $\mathrm{Hz}, 2 \mathrm{H}), 1.56(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.8,139.0,136.7$, 131.0, 129.2, 129.1, 127.4, 127.3, 79.1, 64.4, 51.7, 29.3, 27.3, 25.4, 23.3, 21.6, 14.4, 13.6. HRMS Calculated for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z} 362.1790$, found: 362.1789

9a: Purification by Prep TLC using $60 \% \mathrm{Hex} / \mathrm{EtOAc}(1 \%$ triethylamine) afforded a clear oil in 30% yield (20 mg). ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.27(\mathrm{~m}, J=29.0 \mathrm{~Hz}, 5 \mathrm{H}), 5.53-5.36(\mathrm{~m}, 1 \mathrm{H}), 5.20-5.09(\mathrm{~m}, 1 \mathrm{H}), 5.11-$ $5.02(\mathrm{~m}, 1 \mathrm{H}), 4.13-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{t}(\mathrm{broad}), J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.44(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~s}(\mathrm{broad}), 1 \mathrm{H}), 2.32-$ $2.19(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.75(\mathrm{~m}, J=12.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 7 \mathrm{H}), 1.45(\mathrm{~s}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CHCl}_{3}\right) \delta 154.9,139.4,138.1,136.8,132.8,132.0,128.2,127.7,125.1,78.9,66.7,64.6,49.2,29.7,29.1,25.0,23.8$, 15.0, 14.0. HRMS Calculated for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z} 324.1964$, found: 324.1964

10a: Purification by Prep TLC using $60 \% \mathrm{Hex} / \mathrm{EtOAc}$ (1% triethylamine) afforded a clear oil in 35% yield (27 mg). ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.27(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.92(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{q}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J$ $=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~s}(\mathrm{broad}), 1 \mathrm{H}), 3.93(\mathrm{dd}, J=11.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{~s}(\mathrm{broad}), 1 \mathrm{H}), 2.32$ $-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.16-1.79(\mathrm{~m}, 4 \mathrm{H}), 1.71-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.0,147.7,138.5,136.0,130.9,128.6,128.3,123.8,78.9,64.8,52.4,30.8$ (s (minor)), 29.8, 27.2, 25.6, 24.2, 14.6, 13.4. HRMS Calculated for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: m/z 393.1484, found: 393.1484

General Procedure D for the Preparation of Azepines (3) and Azocines (13) - $1 \mathbf{~ m m o l}$ scale:

A round-bottom flask was charged with oven-dried $5 \AA$ molecular sieves $(0.3 \mathrm{~g} / \mathrm{mmol}$ of limiting reactant, 0.372 g) and stir-bar and was heated under vacuum for roughly one minute by heat gun to fully activate the molecular sieves. After cooling to room temperature, the flask was purged with argon three times and briefly opened and charged successively with hemiaminal $2(1.24 \mathrm{mmol}, 1$ equiv, 0.3 g), and arenynes/enyne $\mathbf{1 a}(1.49 \mathrm{mmol}, 1.2$ equiv, 0.21 g$)$. Dry dichloromethane (adjusted such that limiting reactant reached a concentration of $0.1 \mathrm{M}, 12.4 \mathrm{~mL}$) was added through a needle and the reaction was cooled in a cryo-cooled acetone bath to $-20^{\circ} \mathrm{C}$. Anhydrous bis-
 trifluoromethanesulfonimide (0.25 equiv, 87 mg) was added while limiting its exposure to moisture (bistrifluoromethanesulfonimide that appears deliquescent, not free-flowing, or self-adhesive typically results in longer reaction times and/or poorer yields) was added quickly and a slow color change was observed. The starting hemiaminal is typically consumed almost instantly, forming the N, O-acetal 11, which is much less polar than both starting materials (Rf values are $0.7-0.9$ in $60 \% \mathrm{Hex} / \mathrm{EtOAc}$ and typically matches the color of enyne/arenyne 1 when stained with p-Anisaldehyde). The reaction was carried out at $-20^{\circ} \mathrm{C}$ until consumption of the mixed N, O-acetal 11 was observed by TLC furnishing 3 (typically a slightly more polar spot, $\mathrm{Rf}=0.6-0.7$), upon which anhydrous NaHCO_{3} (5 equiv.) was added as a solid. The suspension was filtered over a silica plug, eluting with $\mathrm{Et}_{2} \mathrm{O}$. The crude-containing filtrate was concentrated and purified by column chromatography or prep-TLC using $60 \% \mathrm{Hex} / \mathrm{EtOAc}$ as the lead eluent to obtain pure $\mathbf{3}$ or $\mathbf{1 3}$.

Azepines $\mathbf{3}$ and azocines $\mathbf{1 3}$ possess a characteristic signal at $\sim 77-80 \mathrm{ppm}$ in ${ }^{13} \mathrm{C}$ NMR corresponding the bridgehead methine (labeled with red sphere). Furthermore, it must be noted that the isolated bicycles undergo rapid conformational changes at room temperature and the rapid equilibration of conformational isomers is exemplified in the ${ }^{1} \mathrm{H}$ NMR spectra as indistinct (blobby) multiplets. As shown in Figure S1, better resolved spectra were obtained with spectra acquisitions at $55^{\circ} \mathrm{C}$ in CDCl_{3} (below).

Figure S1: ${ }^{1} \mathrm{H}$ NMR spectra azepine 3 a at $25^{\circ} \mathrm{C}$ (top) and $55^{\circ} \mathrm{C}$.

Cyclization Reaction to Azepines 3a-c and Azocines 13a-c:

[a] CHCl_{3} used as reaction solvent. [b] 0.25 equiv of promoter used.
Scheme S5. Synthesis of various Azepine-(3) and Azocine-fused (13) ring systems.
3a: (vide supra, page S 9)
3b: Purification by Prep TLC using 60\% Hex/EtOAc (1\% triethylamine) afforded a pale, yellow oil in 52\% yield $(50 \mathrm{mg}) .{ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.56(\mathrm{q}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.39(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=8.6,5.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.77(\mathrm{dt}, J=17.6,9.8 \mathrm{~Hz}, 2 \mathrm{H})$, $2.40(\mathrm{~s}, J=8.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.04-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{dd}, J=12.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.44-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.0,142.3,138.9,133.8,132.7$, 129.2, 127.4, 127.0, 81.0, 67.2, 51.2, 32.3, 31.1, 27.7, 21.6, 14.1, 13.6. HRMS Calculated for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}$
$\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z} 348.1633$, found: 348.1625
3c: Purification by Prep TLC using $60 \% \mathrm{Hex} / \mathrm{EtOAc}(1 \%$ triethylamine) afforded a pale yellow oil was obtained in 73% yield $(54 \mathrm{mg}) .{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 6 \mathrm{H}), 7.23(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 6 \mathrm{H}), 5.62-5.54$ $(\mathrm{m}, 3 \mathrm{H}), 4.35(\mathrm{dd}, J=10.8,2.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.01(\mathrm{ddd}, J=11.2,7.7,4.1 \mathrm{~Hz}, 7 \mathrm{H}), 3.31-3.24(\mathrm{~m}, 3 \mathrm{H}), 2.81-2.73(\mathrm{~m}$, $3 \mathrm{H}), 2.41(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 11 \mathrm{H}), 2.29(\mathrm{ddd}, J=12.4,5.3,2.9 \mathrm{~Hz}, 4 \mathrm{H}), 2.16-2.05(\mathrm{~m}, 8 \mathrm{H}), 1.97-1.79(\mathrm{~m}, 8 \mathrm{H}), 1.73$ $-1.62(\mathrm{~m}, 12 \mathrm{H}), 1.58(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 10 \mathrm{H}){ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.3,142.7,139.2,136.7,132.1,129.1$, 127.6, 127.1, 81.4, 71.6, 49.9, 30.8, 30.3, 29.5, 28.2, 27.9, 21.5, 14.4, 13.4. HRMS Calculated for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z} 376.1946$, found: 376.1940

13a: Purification by Prep TLC using $60 \% \mathrm{Hex} / \mathrm{EtOAc}(1 \%$ triethylamine) afforded a pale, yellow oil in 49% yield $(36 \mathrm{mg}) .{ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.48(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.19(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}(\mathrm{broad}), J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.86(\mathrm{~m}, 2 \mathrm{H}), 3.58-3.40(\mathrm{~m}, 2 \mathrm{H}), 2.99(\mathrm{~s}, 1 \mathrm{H})$, $2.41(\mathrm{~s}, 3 \mathrm{H}), 2.34-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.12-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.75(\mathrm{~m}, 5 \mathrm{H}), 1.56(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.8,139.6,137.0,131.4,129.1,128.0,127.3,125.0,79.1,64.7,51.9,29.4,28.6$, 27.2, 25.7, 24.0, 21.5, 14.7, 13.5. HRMS Calculated for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z} 376.1946$, found: 376.1940

13b: Purification by Prep TLC using $60 \% \mathrm{Hex} / \mathrm{EtOAc}(1 \%$ triethylamine) afforded a pale, yellow oil in 30% yield $(21 \mathrm{mg}) .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.51(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.74(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.10(\mathrm{~m}, 2 \mathrm{H}), 4.00-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{dt}, J=17.2,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{dd}, J=12.8$, $8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=13.8,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.68-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.29-1.67(\mathrm{~m}, 3 \mathrm{H}), 1.56(\mathrm{~d}, J=6.7$ $\mathrm{Hz}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.2$, 137.8, 132.1, 129.8, 129.4, 128.6, 127.9, 127.3, 82.0, $66.6,48.0,33.7,32.2,29.9,25.2,21.7,15.3,13.8$. HRMS Calculated for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z} 362.1790$, found: 362.1783

13c: Purification by Prep TLC using $60 \% \mathrm{Hex} / \mathrm{EtOAc}$ (1% triethylamine) afforded a pale, yellow oil in 42% yield (33 mg). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.65(\mathrm{q}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.06(\mathrm{dd}, J=10.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}(\mathrm{broad}), J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{t}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.59$ (ddd, $J=22.0,7.5$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{ddd}, J=15.0,7.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.35-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{td}, J=12.3,2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $1.92-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.66(\mathrm{~m}, 5 \mathrm{H}), 1.56(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.54-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.0,143.0,137.8,137.4,131.5,129.2,128.0,127.4,79.2,68.3,48.5,33.9,30.7,28.9,27.2,26.1$, 22.1, 21.6, 16.2, 13.3. HRMS Calculated for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z} 406.6050$, found: 406.6051

Cyclization Reaction of Enyne and Arenyne Variants:

${ }^{\mathrm{a}} 0.25$ equiv of promoter used. . ${ }^{\mathrm{b}} 2.0$ equiv $\mathrm{Tf}_{2} \mathrm{NH}$ used. ${ }^{\mathrm{c}}$ Dihydropyran side product observed; see Scheme S 8.
Scheme S6. Enyne/Arenyne (1) Substrate Scope.

3a: (vide supra, page S 9)
3d: Purification by Prep TLC using 60% Hex/EtOAc (1% triethylamine) afforded a pale, yellow oil in 70% yield $(54 \mathrm{mg}) .{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.64(\mathrm{~s}(\mathrm{broad}), 1 \mathrm{H}), 4.20$ (d, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~s}(\mathrm{broad}), 1 \mathrm{H}), 3.91(\mathrm{t}(\mathrm{broad}), J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{dd}, J=17.6,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~s}$ (broad), 1H), $2.41(\mathrm{~s}, 3 \mathrm{H}), 2.37-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{~s}(\mathrm{broad}), 1 \mathrm{H}), 1.99(\mathrm{~s}($ broad $), 2 \mathrm{H}), 1.96-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.83$ $-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.48(\mathrm{~m}, 5 \mathrm{H}), 1.46-1.34(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.8,139.2,135.6$, 132.9, 129.2, 127.4, 79.1, 64.3, 51.6, 29.8, 29.3, 27.5, 27.4, 25.3, 23.1, 22.7, 21.9, 21.6. HRMS Calculated for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z} 388.1946$, found: 388.1940

3e: Purification by Prep TLC using $60 \% \mathrm{Hex} / \mathrm{EtOAc}$ (1% triethylamine) afforded a pale, yellow oil in 56% yield (39 $\mathrm{mg}) .{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.08(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.47(\mathrm{dd}, J=15.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=11.5,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.30-3.23(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.29-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.91(\mathrm{~m}$, $2 \mathrm{H}), 1.71(\mathrm{~d}($ broad $), J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.62-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.32(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.2,141.1,139.5,131.4,129.5,128.4,127.5,124.3,78.1,63.1,48.6,29.9,26.9,23.0,21.6$, 21.0, 18.1. HRMS Calculated for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z} 348.1633$, found: 348.1626

3f: Purification by Prep TLC using 60% Hex/EtOAc (1% triethylamine) afforded a clear oil in 91% yield (69 mg).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24-7.06(\mathrm{~m}, 5 \mathrm{H}), 7.05-6.97(\mathrm{~m}, 4 \mathrm{H}), 4.38(\mathrm{~s}($ broad $), 1 \mathrm{H}), 4.18-4.04(\mathrm{~m}, 1 \mathrm{H})$, $3.97(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{td}, J=10.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{~s}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.24-2.15(\mathrm{~m}, 3 \mathrm{H}), 1.99-1.80$ $(\mathrm{m}, 3 \mathrm{H}), 1.74-1.61(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 142.6,138.4,136.3,129.3,129.1,128.4,128.0$, 127.7, $127.0,125.4,79.2,64.3,51.5,34.3,29.4,27.2,25.0,21.5$. HRMS Calculated for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z}$ 384.1633, found: 384.1627

3g: Purification by Prep TLC using $60 \% \mathrm{Hex} / \mathrm{EtOAc}(1 \%$ triethylamine) afforded a white solid in 76% yield (69 mg) , m.p. $141-142^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.36$ (dd, J $=14.2,7.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.16(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.42$ (s (broad), 1H), 4.19 (s (broad), 1H), $4.00(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=17.2,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~s}(\mathrm{broad}), 1 \mathrm{H}), 2.47-2.33(\mathrm{~m}$, $1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.09-1.82(\mathrm{~m}, 4 \mathrm{H}), 1.79-1.56(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.5,141.1,140.8$, 139.2, 135.7, 133.4, 129.9, 129.1, 129.0, 127.6, 127.2, 127.2, 126.7, 79.3, 64.7, 51.9, 29.5, 27.2, 25.5, 24.2, 21.4. HRMS Calculated for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z} 460.1946$, found: 460.1936

3h: Purification by Prep TLC using 60% Hex/EtOAc (1% triethylamine) afforded a pale, yellow oil in 85% yield $(68 \mathrm{mg}) .{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.16(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.97-6.87(\mathrm{~m}, 4 \mathrm{H}), 4.35$ (d, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~s}(\mathrm{broad}), 1 \mathrm{H}), 3.95(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=16.8,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.23$ (s (broad), $1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.31-2.13(\mathrm{~m}, 3 \mathrm{H}), 2.09-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.61(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.5,139.1,137.5,133.9,133.7,129.5,129.0,128.7,127.2,79.2,64.6,51.7$, 29.5, 27.1, 25.4, 24.0, 21.4, 21.2. HRMS Calculated for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / 398.1790$, found: 398.1785

3i: Purification by Prep TLC using 60\% Hex/EtOAc (1% triethylamine) afforded a pale, yellow oil in 41% yield (34 $\mathrm{mg}) .{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.16(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $6.74(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 4.40(\mathrm{~d}(\mathrm{broad}), J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.02(\mathrm{~m}$, $1 \mathrm{H}), 3.96(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.60-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{~s}(\mathrm{broad}), 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.28-2.16(\mathrm{~m}$, $2 \mathrm{H}), 2.08-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.62(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.1,143.0$, $140.0,139.5,138.2,134.0,129.5,129.5,127.6,122.7,115.4,114.2,79.7,65.1,55.6,52.2,31.3,30.3$ (s (minor)), 29.9, 27.6, 25.9, 24.6 (s (minor)), 21.8. HRMS Calculated for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z} 414.1739$, found: 414.1733

3j: Purification by Prep TLC using 60\% Hex/EtOAc (1\% triethylamine) afforded a brownish-orange oil in 26% yield $(21 \mathrm{mg}) .{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.23-7.11(\mathrm{~m}, 4 \mathrm{H}), 6.97(\mathrm{dd}, J=13.9,7.6 \mathrm{~Hz}, 4 \mathrm{H}), 6.68(\mathrm{dd}, J=$ $17.5,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~s}($ broad $), 1 \mathrm{H}), 4.16$ (s (broad), 1H), $3.98(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.22-3.07(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.28-1.80(\mathrm{~m}, 5 \mathrm{H}), 0.94-0.73(\mathrm{~m}$, $3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) $\delta 142.6,138.5,136.3,129.3,129.1,128.4,127.7,127.0,125.9,125.8,125.5$,
114.2, 79.2, 64.3, 51.5, 29.9, 29.4, 27.2, 25.0, 21.6. HRMS Calculated for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z} 410.1790$, found: 410.1784

3k: Purification by Prep TLC using $60 \% \mathrm{Hex} / \mathrm{EtOAc}(1 \%$ triethylamine) afforded a yellow oil in 53% yield (41 mg). ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{dd}$, $J=5.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.84-6.82(\mathrm{~m}, 1 \mathrm{H}), 4.41(\mathrm{~s}(\mathrm{broad}), 1 \mathrm{H}), 4.08-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.58-$ $3.41(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{~s}($ broad $), 1 \mathrm{H}), 2.54-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.31-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.91$ $-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.50(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.8,138.6,138.5$, $129.4,129.2,128.6,127.8,126.9,126.4,125.9,78.9,63.7,50.3,33.1$ (s (minor)), 29.3, 27.3, 24.7 (s (minor)), 24.3, 23.2, 22.5 (s (minor)), 21.6, 19.8 (s (minor)). HRMS Calculated for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 390.1198 \mathrm{~m} / \mathrm{z}$, found: 390.1191

31: Purification by Prep TLC using $60 \% \mathrm{Hex} / \mathrm{EtOAc}$ (1% triethylamine) afforded a yellow orange in 28% yield (24 $\mathrm{mg}) .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 4.52(\mathrm{~s}(\mathrm{broad}), 1 \mathrm{H}), 4.14-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.67-3.45(\mathrm{~m}$, $2 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.26-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.18-1.64(\mathrm{~m}, 7 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.5,145.1,142.7$, $138.1,130.5,129.8,129.1,128.2,128.1,126.7,126.3,123.2,121.7,106.8,80.0,64.8,51.6,31.1$ (s (minor)), 30.4, 30.0, 28.3, 25.3, 23.8, 21.9. HRMS Calculated for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z} 424.1583$, found: 424.1577

3m: Purification by Prep TLC using $60 \% \mathrm{Hex} / \mathrm{EtOAc}(1 \%$ triethylamine) afforded a clear oil in 23% yield (22 mg). ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J$ $=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.95$ (dd, $J=8.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.49$ (s (broad), 1H), 4.20 (s (broad), 1 H), $4.04-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.76-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.64-$ $3.48(\mathrm{~m}, 2 \mathrm{H}), 3.23(\mathrm{~s}(\mathrm{broad}), 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.11-2.02(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{dt}, J=13.2,7.3 \mathrm{~Hz}$, 2H). ${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) $\delta 142.6,140.1,139.2,135.5,129.6,128.8,127.6,126.9,126.2,124.9,121.6$, 120.4, 119.7, 118.0, 113.8, 111.7, 110.8, 110.7, 79.3, 63.9, 49.6, 36.6, 29.4, 24.2, 21.5, 21.3. HRMS Calculated for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z} 473.1899$, found: 473.1896

Cyclization Reaction of Arenynes S1-4:

Scheme S7. Attempted cyclization of arenynes S1-S4.
In electron-deficient arenyne cases, N, O-acetal formation proceeds unimpeded, however this intermediate readily decomposes under the reaction conditions producing complex product mixtures. It is worth mentioning that N, O-acetal intermediate is isolable and possesses a characteristic signal at $\sim \delta 5.2 \mathrm{ppm}$ in the ${ }^{1} \mathrm{H}$ NMR spectrum corresponding
the methine of the cyclic N, O-acetal. A representative ${ }^{1} \mathrm{H}$ NMR spectrum of N, O-acetal $\mathbf{S 1 0}$ is provided below, obtained from premature quenching of reaction of arenyne $\mathbf{S 4}$ with hemiaminal $\mathbf{2}$.

Figure S2: ${ }^{1} \mathrm{H}$ NMR spectra of N, O-acetal $\mathbf{S 1 0}$ from attempted cyclization of arenyne $\mathbf{S 4}$ (characteristic methine proton of N, O-acetal labeled with blue asterisk).

Cyclization Reaction of Arenyne 1n:

Scheme S8: Production of azepine $\mathbf{3 n}$ and dihydropyran $\mathbf{3 n}$ ' under double annulation conditions with $\mathbf{1 n}$.

3n: Purification by Prep TLC using 60% Hex/EtOAc (1% triethylamine) resulted in the isolation of a white solid which upon recrystallization in 10:1 Pentanes/ $\mathrm{Et}_{2} \mathrm{O}$ with gentle heating with a heat gun afforded sparkling white crystals suitable for X-Ray crystallographic analysis in 30% yield (25 mg), m.p. $128-129{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR (500 MHz ,

$\left.\mathrm{CDCl}_{3}\right) \delta 7.18(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, 6.67 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.37(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.08$ (d (broad), $J=12.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.01-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{td}, J=10.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~s}(\mathrm{broad}), 1 \mathrm{H})$, $2.34(\mathrm{~s}, 3 \mathrm{H}), 2.26-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.09-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.85(\mathrm{~m}, 3 \mathrm{H}), 1.76-1.63$ (m, 2H). ${ }^{13} \mathbf{C}$ NMR (101 MHz, CHCl3) $\delta 159.2,142.5,138.7,133.1,130.5,129.0$,

3n': Purification by Prep TLC using 60\% Hex/EtOAc (1% triethylamine) resulted in the isolation of a white solid which upon recrystallization in $10: 1$ Pentanes/ $\mathrm{Et}_{2} \mathrm{O}$ with gentle heating with a heat gun afforded off-white crystals suitable for X-Ray crystallographic analysis in 22% yield (18 mg), m.p. $133-134{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
 $8.07(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{t}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 4.01-3.91(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~s}, J=5.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.63-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.39-3.17$ $(\mathrm{m}, 1 \mathrm{H}), 3.10-2.96(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.03-1.10(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 175.3,131.7,131.3,128.4,127.8,123.9,118.8,89.8,64.5,40.1,29.2,29.0$, 27.0, 24.9, 17.4, 16.1, 14.1. HRMS Calculated for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z} 414.1739$, found: 414.1733

Conformational Isomerism of Azepine 3n:

As we worked to characterize the novel oxacyclo[3,2-c]-azepines and azocines, we discovered that the vast majority of these molecules display complex conformational profiles at room temperature, evidenced by indistinct, blobby multiplets within the aliphatic region of the ${ }^{1} \mathrm{H}$ NMR spectra. ${ }^{22}$ X-Ray crystallography provided useful insight into this phenomenon, as structural data acquired for azepine $\mathbf{3 n}$ reveals the cocrystallization of two (enantiomorphic) conformational isomers in a 78:22 ratio (bold and dashed, respectively; Figure S3, left). At room temperature, the crystal structure of azepine $3 n$ undergoes boat-to-chair and chair-to-boat interconversion within the oxa- and azacyclic subunits, respectively. Taken together with extensive 2D-NMR spectroscopic studies, the protons of the ${ }^{1} \mathrm{H}$ NMR spectra displayed as indistinct multiplets are in excellent agreement with carbons of the southern hemisphere (denoted with grey spheres in Figure S3, right) which exhibit dynamic behavior in the crystal structure.

Figure S3: Conformational isomerism of 3n by X-Ray crystallographic analysis (aryl groups removed for clarity)

Mechanistic Proposal for the Formation of Dihydropyran 3n':

Scheme S8: Tentative mechanistic proposal for the reactivity of arenyne towards the production of $\mathbf{3 n}$ '.

A tentative mechanism for the formation of dihydropyran $\mathbf{3 n}$ ' is outlined in the Scheme S8. Under the acidic reaction conditions, the electron-rich alkyne could first suffer protonation, followed by capture of vinyl cation by the pendent alcohol. This would generate the especially nucleophilic species \mathbf{A}, which can engage in undesirable reaction pathways; in this case, attack on the iminium species. We conclude from this that in electron-rich alkynes, alkyne protonation (intramolecular) competes with dehydrative condensation (intermolecular), compromising reaction efficiency and lowering yields.

Cyclization Reaction of Hemiaminal Variants:

[a] 0.25 equiv of promoter used.
Scheme S9. Hemiaminal substrate scope.
3a: Isolated as a clear oil in 67%. (vide supra, page S 9)
22a: Purification by Prep TLC using $60 \% \mathrm{Hex} / \mathrm{EtOAc}$ (1% triethylamine) afforded a pale yellow oil in 52% yield $(28 \mathrm{mg}) .{ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 5.97(\mathrm{~s}, 1 \mathrm{H})$, $5.79-5.73(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=15.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.40-3.30(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.74(\mathrm{dd}, J=$
$12.8,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.2,143.3,132.7,132.1$, 131.3, 131.0, 130.0, 127.3, 123.9, 123.7, 118.7, 84.1, 63.3, 28.9, 16.0, 14.4, 13.5. HRMS Calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z} 270.1494$, found: 270.1488

23a: Purification by Prep TLC using $80 \% \mathrm{Hex} / \mathrm{EtOAc}$ (1% triethylamine) afforded a clear oil in 72% yield (50 mg). ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.48(\mathrm{~m}, 3 \mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H}), 5.74(\mathrm{q}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.83(\mathrm{dt}, J=15.3,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{ddt}, J=26.5,8.9,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.07-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.30-$ $2.21(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.62-1.55(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) $\delta 167.7,141.0,133.1,132.0,131.3,131.0,130.0,127.3,123.6,118.7,86.0,84.8$, $68.8,60.6,39.0,28.8,27.3,25.9,18.2,17.2,16.0,14.0$. HRMS Calculated for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z}$ 350.2120 , found: 350.2122

24a: Purification by Prep TLC using $60 \% \mathrm{Hex} / \mathrm{EtOAc}$ (1% triethylamine) afforded a pale yellow oil in 69% yield as a 1.5:1 mixture of diastereomers (52 mg). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63-7.59(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 3 \mathrm{H})$, $5.53-5.40(\mathrm{~m}, 2 \mathrm{H}), 4.13(\mathrm{~s}, 1 \mathrm{H}), 4.03-3.89(\mathrm{~m}, 3 \mathrm{H}), 3.85(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{td}, J=11.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.32$ (dd, $J=18.5,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=18.9,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.96-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 6 \mathrm{H}), 2.32-2.10(\mathrm{~m}, 5 \mathrm{H})$, $2.01-1.61(\mathrm{~m}, 5 \mathrm{H}), 1.57(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 4 \mathrm{H}), 1.53(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 5 \mathrm{H}), 1.18(\mathrm{~s}, 2 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 2 \mathrm{H}), 0.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.8$ (s (minor)), 142.7, 139.1, 138.8 (s (minor)), $137.2,131.1$ (s(minor)), 130.9, 129.1, 129.0, 127.3, 127.2, 127.1 (s(minor)), 82.9, 82.5 (s (minor)), 65.7, 49.9, 34.1 (s (minor)), 32.8, 32.1, 30.5 (s (minor)), 29.8, 21.6, 18.2 (s (minor)), 14.6, 14.5 (s (minor)), 13.6 (s (minor)), 13.5.
HRMS Calculated for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z} 376.1946$, found: 376.1940
25a: Purification by Prep TLC using $60 \% \mathrm{Hex} / \mathrm{EtOAc}(1 \%$ triethylamine) afforded a pale yellow oil in 65% yield as a $2: 1$ mixture of diastereomers $(49 \mathrm{mg}) .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64-7.59(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $3 \mathrm{H}), 5.54-5.41(\mathrm{~m}, 2 \mathrm{H}), 4.16-4.08(\mathrm{~m}, 2 \mathrm{H}), 4.03-3.81(\mathrm{~m}, 4 \mathrm{H}), 3.43(\mathrm{ddd}, J=16.4,11.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.38-$ $3.25(\mathrm{~m}, 1 \mathrm{H}), 3.20-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{~s}(\mathrm{broad})($ minor $), 1 \mathrm{H}), 2.40(\mathrm{~s}, 5 \mathrm{H}), 2.30-2.14(\mathrm{~m}, 4 \mathrm{H}), 1.57$ (d (minor), J $=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.54(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 4 \mathrm{H}), 1.17(\mathrm{~s}($ minor $), 2 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~d}($ minor $), J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.96(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.7$, 142.4 (s (minor)), 139.6, 136.9, 132.0, 131.6 (s(minor)), 129.1, 129.0, 128.8 (s (minor)), 128.6 (s (minor)), 127.8, 127.2, 81.6 (s (minor)), 79.2, 69.1 (s (minor)), 64.5, 55.1 (s (minor)), 53.5, 34.2 (s (minor)), 32.2, 31.9 (s (minor)), 29.8 (m (minor)), 29.3, 25.6, 25.4 (s (minor)), 24.3, 21.6, 20.5, 20.1 (s (minor)), 15.5, 13.9. HRMS Calculated for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z} 376.1946$, found: 376.1943

General Procedure E for the Synthesis of Racemic Secondary Alcohols (+/-)10-t:

Scheme S10. Secondary Racemic Alcohols 10-t synthesized via General Procedure E.
General Parikh-Doering Oxidation Method: To a round-bottom flask, enyne 1a or 1d was dissolved in DCM and following triethylamine was added and stirred at $0^{\circ} \mathrm{C}$. Following cooling to $0^{\circ} \mathrm{C}$, a solution of 1 M solution of sulfur trioxide pyridine complex in DMSO was added slowly/dropwise at $0^{\circ} \mathrm{C}$. Following consumption of starting material (as monitored by TLC analysis), the reaction was quenched with 1 M HCl ($2 x$ the volume of the reaction mixture) and then extracted until a $\mathrm{pH}=1$ was obtained. The combined organics were washed with water 2 x , followed by satd. brine solution, dried with MgSO_{4}, filtered and then concentrated to afford the aldehyde product S11a (from 1a) and S11d (from $\mathbf{1 d}$) in $93 \%(1.28 \mathrm{~g})$ and 55% yield $(65 \mathrm{mg})$ respectively.

Grignard Addition Method: Crude aldehyde S11a/S11d (1 mmol) was dissolved in dry $\mathrm{Et}_{2} \mathrm{O}$ and cooled to $0^{\circ} \mathrm{C}$. Following cooling to $0^{\circ} \mathrm{C}, 1.2$ equiv Grignard (1 M in THF) $(1.2 \mathrm{mmol}$) was added dropwise over 30 min . The reaction was monitored by TLC analysis and upon the observed consumption of starting material, the reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$, washed with brine, dried with MgSO_{4} filtered and concentrated to afford the secondary alcohol (10-t) which was purified via column chromatography using $80 \% \mathrm{Hex} / \mathrm{EtOAc}$ as the lead eluent.

10: Purified by column chromatography (using a step gradient of 100% hexanes/DCM to $100 \% \mathrm{DCM} /$ hexanes) to afford the product as a clear oil in 55% yield $(50 \mathrm{mg}) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.82(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.53$ $-3.47(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{td}, J=7.0,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.62-1.54$ $(\mathrm{m}, 1 \mathrm{H}), 0.92(\mathrm{dd}, J=6.8,1.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 131.3,118.7,85.9,84.4,76.2,33.8,33.2$, 18.8, 17.5, 17.3, 16.4, 14.1. HRMS Calculated for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: m / z 181.1592, found: 181.1589

1p: Purified by column chromatography (using a step gradient of 100% hexanes/DCM to $100 \% \mathrm{DCM} /$ hexanes) to afford the product as a pale yellow oil in 65% yield $(49 \mathrm{mg}) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.84-5.76(\mathrm{~m}, 1 \mathrm{H})$, $3.93(\mathrm{q}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.35(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{~s}($ broad $), 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.66-1.61(\mathrm{~m}, 5 \mathrm{H}), 1.19(\mathrm{~d}, J=6.2$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) $\delta 131.9,118.7,85.5,84.4,67.4,37.9,23.4,17.2,16.0,14.0$ HRMS Calculated for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z}$ 153.1279, found: 153.1276

1q: Purified by column chromatography (using a step gradient of 100% hexanes/DCM to $100 \% \mathrm{DCM} /$ hexanes) to afford the product as a viscous clear oil in 40% yield $(43 \mathrm{mg}) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.23(\mathrm{~m}, 5 \mathrm{H})$, $5.85(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.90-4.81(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.06-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.3,131.4,128.6,127.8,126.0,118.7,85.4,84.7,73.7,38.1,17.3,16.2$, 14.1. HRMS Calculated for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z} 215.1436$, found: 215.1431

1r: Purified by column chromatography (using a step gradient of 100% hexanes/DCM to $100 \% \mathrm{DCM} /$ hexanes) to afford the product as a yellow-orange oil in 59% yield (53 mg). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.87-5.76(\mathrm{~m}, 2 \mathrm{H})$, $5.14(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 3.82-3.74(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.34-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.84$ $(\mathrm{m}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 134.7,131.3$, 118.7, 118.2, 85.5, 84.4, 70.1, 41.9, 35.7, 17.2, 16.0, 14.0. HRMS Calculated for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z}$ 179.1436, found: 179.1434

1s: Purified by column chromatography (using a step gradient of 100% hexanes/DCM to $100 \% \mathrm{DCM} /$ hexanes) to afford the product as a light brown oil in 53% yield $(43 \mathrm{mg}) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.82(\mathrm{q}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.54(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.39(\mathrm{~m}, 3 \mathrm{H}), 1.99-1.89(\mathrm{~m}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 131.6,118.6,84.7,84.6,73.5,61.4,36.6,17.2,15.4,14.0$. HRMS Calculated for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z}$ 163.1123, found: 163.1130

1t: Purified by column chromatography (using a step gradient of 100% hexanes/DCM to $100 \% \mathrm{DCM} /$ hexanes) to afford the product as a light yellow oil in 35% yield (31 mg). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.04-5.99(\mathrm{~m}, 1 \mathrm{H})$, $4.00-3.90(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.12-2.00(\mathrm{~m}, 4 \mathrm{H}), 1.82(\mathrm{~s}(\mathrm{broad}), 1 \mathrm{H}), 1.69-1.51(\mathrm{~m}, 6 \mathrm{H}), 1.21(\mathrm{~d}, J=$ $6.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 133.8,120.9,86.6,83.2,67.5,37.9,29.6,25.7,23.5,22.5,21.7,16.1$. HRMS Calculated for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z}$ 179.1436, found: 179.1434

Synthesis of Enantiopure Secondary Alcohol (S)-1p ${ }^{1,23}$

Scheme S11. Synthesis of (S)-1p.
A round-bottom flask was charged with a stir-bar and purged with argon multiple times. Triethylamine (10 ml) was added and the solvent was degassed by sparging with argon through a long needle. $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(140 \mathrm{mg}, 0.2 \mathrm{mmol}$, $5 \mathrm{~mol} \%$), copper iodide ($76 \mathrm{mg}, 0.4 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and vinyl bromide ($2.16 \mathrm{~g}, 16 \mathrm{mmol}, 4.0$ equiv.) were added successively, while still degassing. After 10 min of continued degassing, crude-hex-5-yn-2-ol ($392 \mathrm{mg}, 4 \mathrm{mmol}, 1.0$ equiv.) was added dropwise. Degassing was ceased and the reaction was carried out at $50{ }^{\circ} \mathrm{C}$ for 16 h until consumption of starting material was observed by TLC, upon which $\mathrm{Et}_{2} \mathrm{O}$ (equal to the initial volume of triethylamine) was added. The reaction was filtered over Celite 545. The filtrate was transferred to a separating funnel and washed repeatedly (typically twice) with $1 \mathrm{Maq} . \mathrm{HCl}$ until the obtained aqueous layer was roughly $\mathrm{pH}=1$ and all triethylamine was removed from the organic layer. The remaining organic layer was then washed with a saturated aqueous solution of NaHCO_{3} and water (both equal to the initial amount of $\mathrm{Et}_{2} \mathrm{O}$) and the organic layer was dried over MgSO_{4} and filtered. The filtrate was concentrated and purified by column chromatography (eluting gradients of $\mathrm{Et}_{2} \mathrm{O}$ in PhMe) to obtain pure $(\mathbf{S}) \mathbf{- 1 p}$ ($334 \mathrm{mg}, 55 \%$ yield over two steps) as a yellow oil. The analytical data obtained matches the analytical data of racemic compound $\mathbf{1 p}$.

Chiral shift NMR: $(\mathbf{S}) \mathbf{- 1 p}(5 \mathrm{mg})$ and $\mathrm{Eu}(\mathrm{hfc})_{3}(15 \mathrm{mg})$ were dissolved in $\mathrm{CDCl}_{3}(0.4 \mathrm{ml})$ and a ${ }^{1} \mathrm{H}$ NMR spectrum was collected. The obtained spectrum was compared to the ${ }^{1} \mathrm{H}$ NMR spectrum obtained from racemic $\mathbf{1 p}(5 \mathrm{mg})$ and $\mathrm{Eu}(\mathrm{hfc})_{3}(15 \mathrm{mg})$ in $\mathrm{CDCl}_{3}(0.4 \mathrm{ml})$ (Figure S4).

Figure S4. Chiral shift NMR data of enantiopure (S)-1p (left) and racemic 1p (right).

Cyclization Reaction of Secondary Alcohol Variants:

(
[a] Diastereoselectivity was >19:1 for all annulations: a single diastereoisomer was observed by ${ }^{1} \mathrm{H}$ NMR. [b] With reactant (\mathbf{S})-1o (>99:1 er), $\mathbf{3 o}$ is isolated in 54% yield, >19:1 dr; > 99:1 er (HPLC analysis). [c] Reaction performed at $-40^{\circ} \mathrm{C}$.

Scheme S12. Diastereoselective synthesis of azepines 3o-t.
30: Purification by Prep TLC using $80 \% \mathrm{Hex} / \mathrm{EtOAc}(1 \%$ triethylamine) afforded the product as clear viscous oil in 47% yield (38 mg) as one isomer ($>19: 1 \mathrm{dr}$). ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 5.50(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.01(\mathrm{~m}, 2 \mathrm{H}), 2.88(\mathrm{dd}, J=15.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~s}(\mathrm{broad}), 1 \mathrm{H}), 2.40(\mathrm{~s}$, $3 \mathrm{H}), 2.37-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{~s}($ broad $), 2 \mathrm{H}), 1.95-1.68(\mathrm{~m}, 3 \mathrm{H}), 1.67-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.56(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$, $1.18(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.7,139.5,136.27$, 131.6, 129.1, 127.6, 126.8, 79.9, 79.4, 51.7, 33.9, 29.8, 29.4, 27.6, 23.7, 21.5, 18.8, 18.0, 14.6, 13.4. HRMS Calculated for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z} 404.2259$, found: 404.2258
(+/-) 3p: Purification by Prep TLC using $80 \% \mathrm{Hex} / E t O A c(1 \%$ triethylamine) afforded the product as a clear viscous oil in 55% yield $(41 \mathrm{mg})$ as one isomer ($>19: 1 \mathrm{dr}$). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.22(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.48(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~s}(\mathrm{broad}), 1 \mathrm{H}), 3.54-3.44(\mathrm{~m}$, $1 \mathrm{H}), 2.99(\mathrm{~s}(\mathrm{broad}), 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.30-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.12-1.77(\mathrm{~m}, 3 \mathrm{H}), 1.77-1.57(\mathrm{~m}, 3 \mathrm{H}), 1.55(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{~s}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.7,139.8,137.3$, 136.9, 131.7, 129.1, 127.6, 127.1, 79.1, 71.3, 52.0, 34.0, 29.5, 27.1, 24.5, 22.3, 21.4, 14.7, 13.4. HRMS Calculated for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z} 376.1946$, found: 376.1945
(S)-3p: Purification by Prep TLC using 80% Hex/EtOAc (1% triethylamine) afforded the product as a clear viscous oil in 54% yield (41 mg) as a single isomer ($>19: 1 \mathrm{dr} ;>99: 1 \mathrm{er}$). Characterization data matches that of ($+/-$)-3p. See S23-S24 for chromatogram of chiral HPLC.

3q: Purification by Prep TLC using $80 \% \mathrm{Hex} / E t O A c$ (1% triethylamine) afforded a yellow oil which upon subjection to a 10:1 Pentanes/Et ${ }_{2} \mathrm{O}$ mixture with gentle heating with a heat gun afforded produced pale-yellow crystals suitable for X-Ray crystallographic anaylsis in 62% yield (47 mg) as a single isomer ($>19: 1 \mathrm{dr}$); m.p. 167 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.25(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 5.55(\mathrm{q}, J$ $=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{dd}, J=9.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~s}(\mathrm{broad}), 1 \mathrm{H}), 3.14(\mathrm{~s}(\mathrm{broad}), 1 \mathrm{H})$, $2.42(\mathrm{~s}, 3 \mathrm{H}), 2.19-1.70(\mathrm{~m}, 8 \mathrm{H}), 1.58(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR
 $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.9,142.8,139.8,137.5,135.9,131.7,129.1,128.4,127.6$, $127.3,127.3,125.9,79.6,77.4,52.3,34.6,29.3,26.7,25.4,21.4,14.7,13.4$. HRMS Calculated for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: $\mathrm{m} / \mathrm{z} 438.2103$, found: 438.2102;

X-Ray Crystallographic analysis reveals a syn relationship within the dihydropyranyl ring at the 2-and 6-positions.

3r: Purification by Prep TLC using $80 \% \mathrm{Hex} / \mathrm{EtOAc}$ (1% triethylamine) afforded the product Isolated as pale yellow oil in 51% yield $(50 \mathrm{mg})$ as one isomer ($>19: 1 \mathrm{dr}) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.22(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.88-5.74(\mathrm{~m}, 1 \mathrm{H}), 5.53-5.42(\mathrm{~m}, 1 \mathrm{H}), 5.13-4.98(\mathrm{~m}, 2 \mathrm{H}), 4.17(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.04(\mathrm{~s}($ broad $), 1 \mathrm{H}), 3.44-3.32(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{~s}(\mathrm{broad}), 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.35-1.63(\mathrm{~m}, 10 \mathrm{H}), 1.55(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.7$, 139.5, 136.7, 135.1, 131.6, 129.1, 127.5, 127.0, 116.6, $79.3,74.5,51.8,41.1,31.6,29.4,27.3,23.9,21.5,14.6,13.4$. HRMS Calculated for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z}$ 402.2103, found: 402.2101

3s: Purification by Prep TLC using $80 \% \mathrm{Hex} / \mathrm{EtOAc}(1 \%$ triethylamine) afforded the product as a pale yellow oil in 61% yield $(39 \mathrm{mg})$ as one isomer ($>19: 1 \mathrm{dr}) .{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.53-5.43(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~s}(\mathrm{broad}), 1 \mathrm{H}), 2.99(\mathrm{~s}$ (broad), 1H), $2.41(\mathrm{~s}, 3 \mathrm{H}), 2.37-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.13-1.79(\mathrm{~m}, 6 \mathrm{H}), 1.69-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.56(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H})$, $1.23(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 142.9,139.4,137.9,131.4,129.2,127.6,127.6,83.9,79.6,73.1,64.9$, $51.9,33.0,29.4,27.1,24.0,21.5,14.6,13.5$. HRMS Calculated for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z} 386.1790$, found: 386.1795

3t: Purification by Prep TLC using $80 \% \mathrm{Hex} / \mathrm{EtOAc}$ (1% triethylamine) afforded as a clear oil in 59% yield (49 mg) as one isomer ($>19: 1 \mathrm{dr}) .{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.67-$ $5.59(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=14.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.03-2.86(\mathrm{~m}, 1 \mathrm{H})$, $2.43-2.38(\mathrm{~m}, 3 \mathrm{H}), 2.36-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.15-1.89(\mathrm{~m}, 6 \mathrm{H}), 1.87-1.34(\mathrm{~m}, 8 \mathrm{H}), 1.19(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.7,139.8,135.6,133.5,129.2,129.1,128.0,127.6,79.1,71.1,51.8,33.8,29.5,27.3$, 27.2, 25.3, 24.1, 22.3, 22.3, 22.0, 21.5. HRMS Calculated for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z} 402.2103$, found: 402.2100

Chromatogram of (+/-)-3p (Racemate):

<Chromatogram>

mV
(+/-)-3p (Racemate)
(
<Peak Table>
Detector A 210 nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	0.530	1858	111	0.000			
2	1.513	1247	142	0.000			
3	1.931	14256	1966	0.000			
4	2.066	69017	14948	0.000			
5	2.170	62647	9972	0.000		V	
6	2.410	65028	9807	0.000		V	
7	2.576	16888	2033	0.000		V	
8	2.820	48030	3182	0.000		V	
9	3.286	34871	1915	0.000		V	
10	3.559	24360	1946	0.000		V	
11	3.860	68397	4455	0.000		V	
12	4.056	26586	2617	0.000		V	
13	4.575	2699524	281303	0.000		V	
14	5.164	48278	2896	0.000		V	
15	5.566	99753	9589	0.000		V	
16	5.864	2655984	213275	0.000		SV	
17	7.058	1572	115	0.000		T	
18	7.435	3568	187	0.000		TV	
19	7.822	1379	96	0.000		TV	
20	8.756	3498	188	0.000		TV	
21	9.165	1900	126	0.000		TV	
22	9.593	7228	287	0.000		TV	

Chromatogram of-3p:

<Chromatogram>

mV
(S)-3p (Enantioenriched)

<Peak Table>

Detector A 210nm							
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	0.472	3772	208	0.000			
2	0.871	4672	265	0.000		V	
3	1.352	3420	256	0.000			
4	1.943	22210	3042	0.000		V	
5	2.062	152724	22919	0.000		V	
6	2.405	249275	43873	0.000		V	
7	2.764	193777	24866	0.000		SV	
8	3.073	1313	219	0.000		T	
9	3.360	9709	772	0.000		TV	
10	3.629	2356	497	0.000		T	
11	3.788	92304	13578	0.000		V	
12	3.930	109146	15922	0.000		V	
13	4.060	187119	20194	0.000		V	
14	4.488	9808048	1066202	0.000		SV	
15	4.994	1502	319	0.000		T	
16	5.328	13999	1648	0.000		TV	
17	5.687	62065	3303	0.000		TV	
18	6.378	1862	173	0.000		T	
19	6.777	8033	613	0.000			
20	7.197	42814	2690	0.000		V	
21	7.510	8039	691	0.000		V	
22	7.949	12542	610	0.000		V	

X-Ray Crystal Data for Compounds 3n, 3n' and 3q

Data collection

A crystal ($0.141 \times 0.091 \times 0.037 \mathrm{~mm}^{3}$) was placed onto a thin glass optical fiber or a nylon loop and mounted on a Rigaku XtaLab Synergy-S Dualflex diffractometer equipped with a HyPix-6000HE HPC area detector for data collection at $100.00(10) \mathrm{K}$. A preliminary set of cell constants and an orientation matrix were calculated from a small sampling of reflections. ${ }^{24}$ A short pre-experiment was run, from which an optimal data collection strategy was determined. The full data collection was carried out using a PhotonJet (Cu) X-ray Source with frame times of 0.37 and 1.49 seconds and a detector distance of 31.2 mm . Series of frames were collected in 0.50° steps in ω at different $2 \theta, \kappa$, and ϕ settings. After the intensity data were corrected for absorption, the final cell constants were calculated from the xyz centroids of 10552 strong reflections from the actual data collection after integration. ${ }^{24}$ See Table S2, S3, and S4 for additional crystal and refinement information.

Structure solution and refinement
The structure was solved using ShelXT ${ }^{25}$ and refined using ShelXL ${ }^{26}$ The space group $P 2_{1} / n$ was determined based on systematic absences. Most or all non-hydrogen atoms were assigned from the solution. Full-matrix least squares / difference Fourier cycles were performed which located any remaining non-hydrogen atoms. All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters. The final full matrix least squares refinement converged to $R 1=0.0415\left(F^{2}, I>2 \sigma(I)\right)$ and $w R 2=0.1147\left(F^{2}\right.$, all data $)$.

Structure description

The structure is the one suggested. The asymmetric unit contains one molecule in a general position. One segment (-C2-C3-C4-O1-C5-) of the molecule is modeled as disordered over two positions (0.78:0.22).

Structure manipulation and figure generation were performed using Olex2. ${ }^{27}$ Unless noted otherwise all structural diagrams containing thermal displacement ellipsoids are drawn at the 50% probability level.

Data collection, structure solution, and structure refinement were conducted at the X-ray Crystallographic Facility, B04 Hutchison Hall, Department of Chemistry, University of Rochester. The instrument was purchased with funding from NSF MRI program grant CHE-1725028.

$$
\begin{gathered}
R_{\mathrm{int}}=\Sigma\left|F_{\mathrm{o}}^{2}-\left\langle F_{\mathrm{o}}^{2}\right\rangle\right| / \Sigma\left|F_{\mathrm{o}}^{2}\right| \\
R 1=\Sigma\left\|F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}} \| / \Sigma\right| F_{\mathrm{o}}\right|\right. \\
w R 2=\left[\Sigma\left[w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{\mathrm{o}}^{2}\right)^{2}\right]\right]^{1 / 2} \\
\text { where } w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(a P)^{2}+b P\right] \text { and } \\
P=1 / 3 \max \left(0, F_{\mathrm{o}}^{2}\right)+2 / 3 F_{\mathrm{c}}^{2} \\
\text { GOF }=S=\left[\Sigma\left[w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right] /(m-n)\right]^{1 / 2}
\end{gathered}
$$

where $m=$ number of reflections and $n=$ number of parameters

X-Ray Crystal Data for Compound 3n

Table S2. Crystal data and structure refinement for compound 3n.

Identification code	Compound 3n
Empirical formula	C23 H27 N O4 S
Formula weight	413.51
Temperature	100.00(10) K
Wavelength	1.54184 A
Crystal system	monoclinic
Space group	$P 2{ }_{1} / n$
Unit cell dimensions	
	$b=12.4470(2) \AA$ A $\quad \beta=92.4940(10)^{\circ}$
	$c=15.9520(2) \AA \quad \gamma=90^{\circ}$
Volume	2039.54(6) \AA^{3}
Z	4
Density (calculated)	$1.347 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.656 \mathrm{~mm}^{-1}$
$F(000)$	880
Crystal color, morphology	colourless, block
Crystal size	$0.141 \times 0.091 \times 0.037 \mathrm{~mm}^{3}$
Theta range for data collection	4.507 to 77.634°
Index ranges	$-12 \leq h \leq 12,-12 \leq k \leq 15,-19 \leq l \leq 20$
Reflections collected	17298
Independent reflections	$4274[R($ int $)=0.0406]$
Observed reflections	3879
Completeness to theta $=74.504^{\circ}$	99.8\%
Absorption correction	Multi-scan
Max. and min. transmission	1.00000 and 0.77822
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4274 / 10 / 279
Goodness-of-fit on F^{2}	1.063
Final R indices [$I>2 \operatorname{sigma}(I)$]	$R 1=0.0415, w R 2=0.1120$
R indices (all data)	$R 1=0.0448, w R 2=0.1147$
Largest diff. peak and hole	0.316 and -0.471 e. \AA^{-3}

X-Ray Crystal Data for Compound 3n'

Table S3. Crystal data and structure refinement for compound $\mathbf{3 n}$ '.

Identification code	Compound 3n'
Empirical formula	C23 H27 N O4 S
Formula weight	413.51
Temperature	99.98(11) K
Wavelength	1.54184 A
Crystal system	monoclinic
Space group	$P 2{ }_{1} / c$
Unit cell dimensions	$a=9.7024(2) \AA \quad \alpha=90^{\circ}$
	$b=9.7412(2) \AA \quad \beta=90.413(2)^{\circ}$
	$c=22.0160(5) \AA \quad \gamma=90^{\circ}$
Volume	2080.74(8) \AA^{3}
Z	4
Density (calculated)	$1.320 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.623 \mathrm{~mm}^{-1}$
$F(000)$	880
Crystal color, morphology	colourless, block
Crystal size	$0.347 \times 0.169 \times 0.097 \mathrm{~mm}^{3}$
Theta range for data collection	4.016 to 77.681°
Index ranges	$-12 \leq h \leq 12,-12 \leq k \leq 5,-27 \leq l \leq 25$
Reflections collected	18174
Independent reflections	$4369[R($ int $)=0.0471]$
Observed reflections	3894
Completeness to theta $=74.504^{\circ}$	99.9\%
Absorption correction	Multi-scan
Max. and min. transmission	1.00000 and 0.76389
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4369 / 0 / 264
Goodness-of-fit on F^{2}	1.087
Final R indices [$I>2 \operatorname{sigma}(I)$]	$R 1=0.0442, w R 2=0.1176$
R indices (all data)	$R 1=0.0482, w R 2=0.1208$
Largest diff. peak and hole	0.291 and -0.391 e. \AA^{-3}

X-Ray Crystal Data for Compound 3q

Table S4. Crystal data and structure refinement for compound $\mathbf{3 q}$.

Identification code	compound 3q
Empirical formula	C26 H31 N O3 S
Formula weight	437.58
Temperature	100.00(10) K
Wavelength	1.54184 Å
Crystal system	monoclinic
Space group	$P 2{ }_{1} / n$
Unit cell dimensions	$a=11.8073(2) \AA$ ® $\quad \alpha=90^{\circ}$
	$b=9.5486(2) \AA \quad \beta=102.611(2)^{\circ}$
	$c=21.3505(4) \AA$ ¢ $\quad \gamma=90^{\circ}$
Volume	2349.05(8) \AA^{3}
Z	4
Density (calculated)	$1.237 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.433 \mathrm{~mm}^{-1}$
$F(000)$	936
Crystal color, morphology	colourless, block
Crystal size	$0.169 \times 0.083 \times 0.04 \mathrm{~mm}^{3}$
Theta range for data collection	3.958 to 77.999°
Index ranges	$-14 \leq h \leq 14,-11 \leq k \leq 9,-26 \leq l \leq 27$
Reflections collected	21493
Independent reflections	$4923[R(\mathrm{int})=0.0452]$
Observed reflections	4308
Completeness to theta $=74.504^{\circ}$	99.9\%
Absorption correction	Multi-scan
Max. and min. transmission	1.00000 and 0.83105
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4923 / 0 / 283
Goodness-of-fit on F^{2}	1.073
Final R indices [$I>2 \operatorname{sigma}(I)]$	$R 1=0.0480, w R 2=0.1311$
R indices (all data)	$R 1=0.0532, w R 2=0.1350$
Largest diff. peak and hole	0.551 and -0.384 e..$^{-3}$

References:

[^0]
[^0]: ${ }^{1}$ J. Am. Chem. Soc. 2019, 141, 1, 118-122
 ${ }^{2}$ J. Am. Chem. Soc. 2019, 141, 5461-5469
 ${ }^{3}$ J. Org. Chem. 1991, 56, 25
 ${ }^{4}$ Tetrahedron 2008, 64, 6002-6014
 5 J. Mol. Catal. A: Chem. 2006, 256, 75-84
 ${ }^{6}$ J. Org. Chem. 2013, 78, 568-581
 ${ }^{7}$ J. Am. Chem. Soc. 2014, 136, 7, 2711-2714
 ${ }^{8}$ Org. Biomol. Chem. 2016, 14, 3284-3297
 ${ }^{9}$ J. Am. Chem. Soc. 2003, 125, 40, 12300-12308
 ${ }^{10}$ Org. Lett. 2009, 11, 15, 3458-3461
 ${ }^{11}$ Angew.Chem.Int.Ed.2015,54,10005-10008
 ${ }^{12}$ J. Org. Chem. 2005, 70, 8, 3066-3071
 ${ }^{13}$ Eur. J. Org. Chem. 2017, 373-380
 ${ }^{14}$ Org. Lett. 2014, 16, 4256-4259
 ${ }^{15}$ Org. Lett. 2009, 11, 15, 3458-3461
 ${ }^{16}$ Chemistry - An Asian Journal 2011, 6(2), 372-375
 ${ }^{17}$ Angew. Chem. Int. Ed. 2007, 46, 1893 -1896
 ${ }^{18}$ Chem. Commun., 2015, 51, 15458-15461
 ${ }^{19}$ Org. Lett. 2019, 21, 18, 7430-7434
 ${ }^{20}$ Tetrahedron Letters 1995, 36 (24), 4201-4204
 ${ }^{21}$ Eur. J. Org. Chem. 2011, 5, 892-897
 ${ }^{22}$ The conformational equilibria of seven-membered carbocycles is well known: (a) Hendrickson, J. B. J. Am. Chem. Soc. 1967, 89, 7047-7061; (b) Katritzky, A. R.; Akhmedov, N. G.; Ghiviriga, I.; Maimait R. N. G. J. Chem. Soc., Perkin Trans. 2, 2002,1986-1993
 ${ }^{23}$ J. Org. Chem. 2016, 81, 9886-9894.
 ${ }^{24}$ CrysAlisPro, version 171.40.69a; Rigaku Corporation: Oxford, UK, 2019
 ${ }^{25}$ SHELXT, version 2018/2; Acta. Crystallogr. 2015, A71, 3-8.
 ${ }^{26}$ SHELXL, version 2018/3; Acta. Crystallogr. 2015, C71, 3-8.
 ${ }^{27}$ Olex2, version 1.2-ac3; J. Appl. Cryst. 2009, 42, 339-341.

