Supporting Information

Conformal Shell Amorphization of Nanoporous Ag-

Bi for Efficient Formate Generation

Xiangji Zhou,[†] Xianglong Lu,[†] Tianshui Yu,[†] Hailing Wang,[†] Lihua Qian,^{*,†} Pengxiang Lei,[‡]

Yao Yu,[§] Lin Liu,[§] Shengguo Xia^I and Jiakun Fang^I

[†] School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China.

‡ School of Chemistry and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China.

§ School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.

I State Key Lab of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

Corresponding Author

*L. Qian. E-mail: <u>lhqian@hust.edu.cn</u>

Contents of supporting information:

Figure S1. Microstructural characterizations of the NPSB.

Figure S2. CV tests of fresh a-NPSB and nanoporous Ag.

Figure S3. Statistical distribution on the thickness of the amorphous layer.

Figure S4. Microstructural characterizations of the Bi-NPs.

Figure S5. EDS and XRD on the NPSB, the a-NPSB and the c-NPSB.

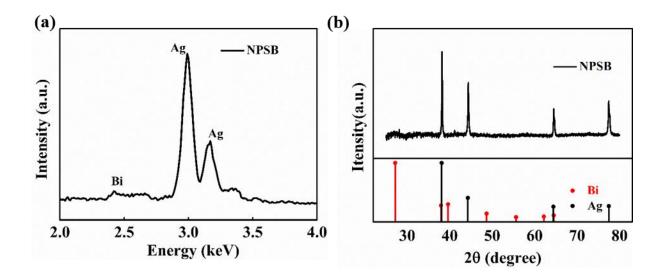

Figure S6. SEM and STEM characterizations of the c-NPSB.

Figure S7. CV tests for electric double-layer capacitance of the catalysts.

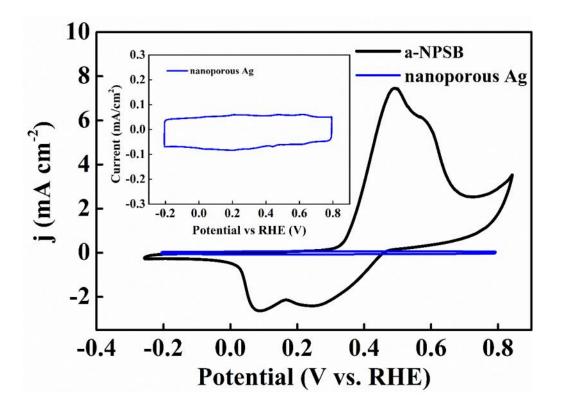
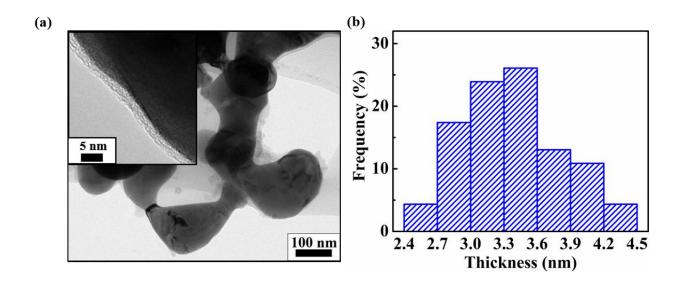
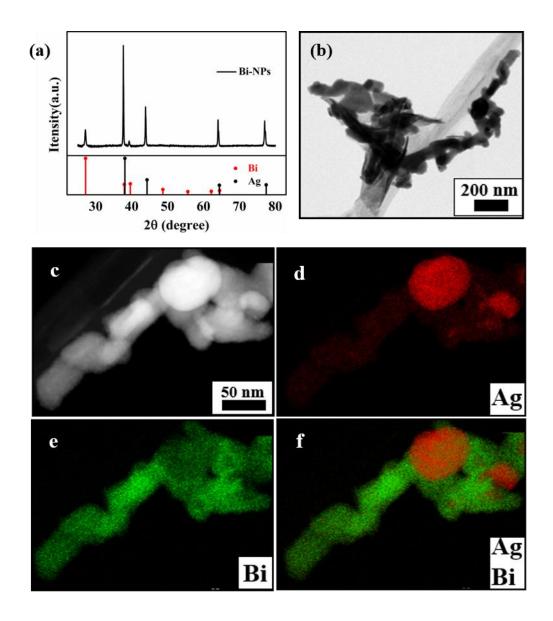
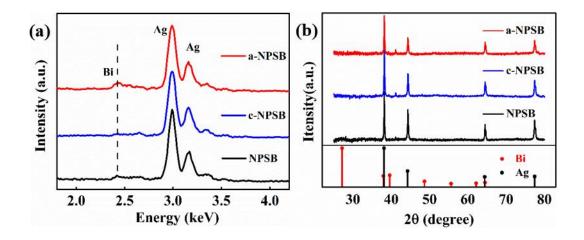

Figure S8. XRD and XPS on fresh a-NPSB and used a-NPSB.

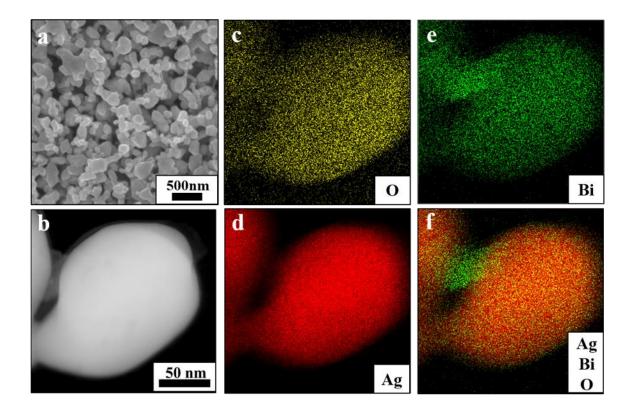
Table S1. The Bi concentration estimated by ICP-OES analysis.

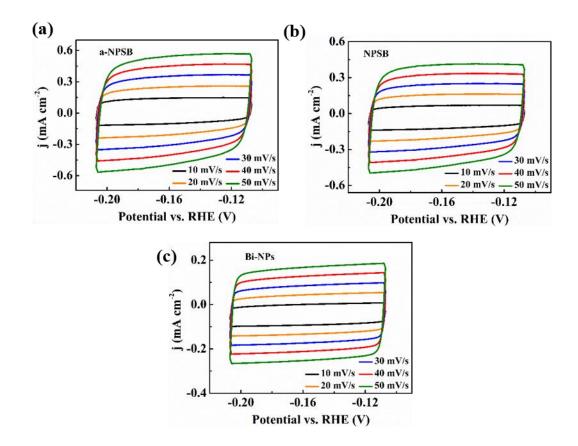
Table S2. The performance of Bi derived catalysts in previous investigations.

Figure S1. (a) The EDS pattern of the NPSB indicates atomic concentration of Bi element as 2.27 atom %. (b) The XRD pattern of the NPSB shows four sharp diffraction peaks corresponding to Ag polycrystal. No signal can be detected from Bi crystal, implying the formation of Ag-Bi solid solution.

Figure S2. The CV curves of the a-NPSB and nanoporous Ag. The electrochemical measurement is conducted in CO_2 saturated 0.1 M KHCO₃ electrolyte with scan rate of 5 mV/s. The redox peaks of the a-NPSB correspond to the dissolution of amorphous Bi₂O₃ and Bi deposition on the a-NPSB. The redox of Ag atoms does not get involved in this potential range.


Figure S3. (a) TEM and HRTEM images of the a-NPSB. (b) Statistical distribution on the thickness of amorphous Bi_2O_3 layer based on the morphology.


Figure S4. (a) XRD pattern, (b) TEM image, (c) STEM image and (d-f) element mapping images of the Bi-NPs with tens of nm.

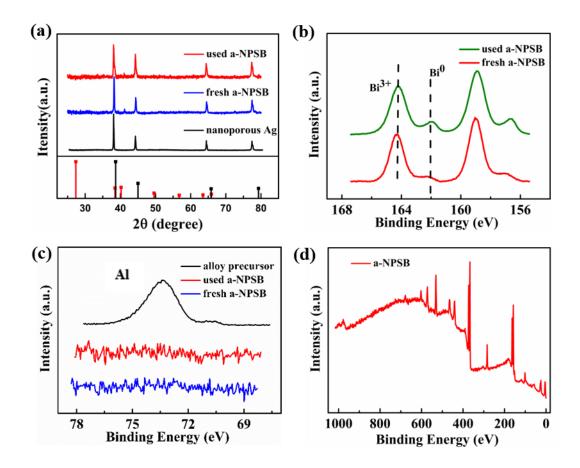

Figure S5. (a) The EDS and (b) XRD patterns of the NPSB, the c-NPSB and the c-NPSB. Bi signal is weak, and Ag signals from different samples show the nearly identical profile. XRD patterns of nanoporous Ag and the a-NPSB show one isolate Ag phase, implying that Bi elements are diluted into Ag lattice. The diffraction peak at 43° is the low level of residual Ag₂Al that cannot be dissolved by chemical dealloying.

Figure S6. The morphology and element distribution of the ligaments in the c-NPSB. (a-b) SEM and STEM images of the c-NPSB exhibit the similar morphology with the a-NPSB. But no amorphous shell on the c-NPSB is observed on the surface of most ligaments. (c-f) Element mapping of Ag, Bi, O verifies that most of amorphous Bi₂O₃ shells are dissolved when the a-NPSB is subjected to multiple CV stripping. Thus, some Bi elements are detected from the electrolytes after CV stripping by means of the ICP-OES.

Figure S7. Cyclic voltammograms of (a) a-NPSB, (b) NPSB and (c) Bi-NPs with different scan rates.

Figure S8. (a) XRD patterns of the used a-NPSB, fresh a-NPSB and nanoporous Ag. XPS patterns of (b) Bi and (c) Al elements on fresh a-NPSB and the a-NPSB after 18 hours electrochemical catalytic reaction. The Al signal is absent in the high resolution XPS, implying that the residual Ag₂Al locates at the inner skeletons rather than ligament surface. (d) XPS surveyed spectrum of the a-NPSB.

Table S1 The ICP-OES analysis shows the Bi concentration in the NPSB, and the real concentration of NPSB detected by ICP-OES approaches to the expected concentration. The content of Bi in NPSB calculated based on the real concentration is 2.18%. The real concentration of Bi element in electrolyte is close to the expected concentration, demonstrating the dissolution of the amorphous Bi₂O₃ shell.

Electrode or electrolyte	Expected concentration (ppm)	Real concentration (ppm)
NPSB	7.663	6.9035
Electrolyte	0.0223	0.0294

Electrocatalyst	Electrolyte	Potential	Current density	FE	Stability test	Reference
Nanoporous Ag@ Bi2O3	0.1 M KHCO ₃	-1.15 V vs. RHE	21.2 mA cm ⁻²	88.4%	18 h	This work
Bi ₂ O ₃ NSs@MCCM	0.1 M KHCO ₃	-1.356 V vs. RHE	17.7 mA cm ⁻²	~90%	12 h	1
3D fractal structures of Bi ₂ O ₃	0.1 M KHCO ₃	-1.2 V vs. RHE	24 mA cm ⁻²	87%	6 h	2
Nanotube-derived Bi	0.5 M KHCO ₃	-0.82 V vs. RHE	36 mA cm ⁻²	~98%	48 h	3
Bi ₂ O ₃ with enhanced Bi-O	0.5 M KHCO ₃	-0.9 V vs. RHE	~ 8 mA cm ⁻²	91%	24 h	4
Bi nanoparticles/ Bi2O3 nanosheet	0.5 M NaHCO ₃	-0.86 V vs. RHE	10 mA cm ⁻²	>90%	24 h	5
BiOx/C	0.5 M NaHCO3 and 0.5 M NaClO4	-1.75 V vs. Ag/AgCl	16.1 mA cm ⁻²	93.4%	3 h	6
Bi nanosheet	0.5 M NaHCO ₃	-1.5 V vs. SCE	14 mA cm ⁻²	~95%	10 h	7
Defect-rich Bi	0.5 M NaHCO ₃	-0.75 V vs. RHE	5.0 mA cm ⁻²	84%	24 h	8

 Table S2 CO2ER catalytic properties of various Bi derived catalysts.

- Liu, S.; Lu, X.; Xiao, J.; Wang, X.; Lou, X. Bi₂O₃ Nanosheets Grown on Multi-Channel Carbon Matrix to Catalyze Efficient CO₂ Electroreduction to HCOOH. *Angew. Chem. Int. Ed.* **2019**, *58*, 13828-13833.
- (2) Tran-Phu, T.; Daiyan, R.; Fusco, Z.; Ma, Z.; Amal, R.; Tricoli, A. Nanostructured β-Bi₂O₃ Fractals on Carbon Fibers for Highly Selective CO₂ Electroreduction to Formate. *Adv. Funct. Mate.* **2019**, *30*, 1906478.
- (3) Gong, Q.; Ding, P.; Xu, M.; Zhu, X.; Wang, M.; Deng, J.; Ma, Q.; Han, N.; Zhu, Y.; Lu, J.; Feng, Z.; Li, Y.; Zhou, W.; Li, Y. Structural Defects on Converted Bismuth Oxide Nanotubes Enable Highly Active Electrocatalysis of Carbon Dioxide Reduction. *Nat. Commun.* 2019, 10, 2807.
- (4) Deng, P.; Wang, H.; Qi, R.; Zhu, J.; Chen, S.; Yang, F.; Zhou, L.; Qi, K.; Liu, H.; Xia, B. Bismuth Oxides with Enhanced Bismuth-Oxygen Structure for Efficient Electrochemical Reduction of Carbon Dioxide to Formate. ACS Catal. 2020, 10, 743–750.
- (5) Li, L.; Ma, D.; Qi, F.; Chen, W.; Huang, S. Bi Nanoparticles/Bi₂O₃ Nanosheets with Abundant Grain Boundaries for Efficient Electrocatalytic CO₂ Reduction. *Electrochimica Acta* 2019, 298, 580-586.
- (6) Lee, C. W.; Hong, J. S.; Yang, K. D.; Jin, K.; Lee, J. H.; Ahn, H.-Y.; Seo, H.; Sung, N.-E.; Nam, K. T. Selective Electrochemical Production of Formate from Carbon Dioxide with Bismuth-Based Catalysts in an Aqueous Electrolyte. *ACS Catal.* **2018**, *8*, 931–937.
- (7) Han, N.; Wang, Y.; Yang, H.; Deng, J.; Wu, J.; Li, Y.; Li, Y. Ultrathin Bismuth Nanosheets from in Situ Topotactic Transformation for Selective Electrocatalytic CO₂ Reduction to Formate. *Nat. Commun.* **2018**, *9*, 1320.
- (8) Zhang, Y.; Li, F.; Zhang, X.; Williams, T.; Easton, C. D.; Bond, A. M.; Zhang, J. Electrochemical Reduction of CO₂ on Defect-rich Bi Derived from Bi₂S₃ with Enhanced Formate Selectivity. *J. Mater. Chem. A* **2018**, *6*, 4714-4720.