Supporting Information Hydroxy-*neo*-Clerodanes and 5,10-*seco-neo*-

Clerodanes from Salvia decora

José Rivera-Chávez,^{†,*} Celia Bustos-Brito,[†] Enrique Aguilar-Ramírez,[†] Diego Martínez-Otero,[‡] Luis D. Rosales-Vázquez,[§] Alejandro Dorazco-González,[§] and Patricia Cano-Sánchez^{\perp}

[†]Departamento de Productos Naturales, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, Mexico [‡]Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco, Toluca, 50200, Mexico

[§]Departamento de Química Inorgánica, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, Mexico

[⊥]Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, Mexico

Supporting Information

Table of Contents

	Page
Figure S1 . UPLC–PDA–HRMS–MS/MS data for primary fraction 1. A) Base peak	
chromatogram (top) and UV/vis (190–500 nm) chromatogram (bottom). B) HRMS	S 6
spectrum of peak at 7.22 min.	
Figure S2. UPLC–PDA–HRMS–MS/MS data for primary fraction 2. A) Base peak	
chromatogram (top) and UV/vis (190-500 nm) chromatogram (bottom). B) HRMS	S 7
spectrum of peaks at 7.13, 7.20, 7.29 and 7.42 min.	
Figure S3. UPLC–PDA–HRMS–MS/MS data for primary fraction 3. A) Base peak	
chromatogram (top) and UV/vis (190-500 nm) chromatogram (bottom). B) HRMS	S 8
spectrum of peak at 7.43 min.	
Figure S4. UPLC–PDA–HRMS–MS/MS data for primary fraction 4. A) Base peak	
chromatogram (top) and UV/vis (190–500 nm) chromatogram (bottom). B) HRMS	S 9
spectrum of peaks at 3.03, 3.63, 5.14 and 5.43 min.	
Figure S5 . UPLC–PDA–HRMS–MS/MS data for primary fraction 5. A) Base peak	
chromatogram (top) and UV/vis (190–500 nm) chromatogram (bottom). B) HRMS	S 10
spectrum of peaks at 4.04, 4.12, 4.32, 4.40 and 4.65 min.	
Figure S6 . UPLC–PDA–HRMS–MS/MS data for primary fraction 6. A) Base peak	
chromatogram (top) and UV/vis (190–500 nm) chromatogram (bottom). B) HRMS	S 11
spectrum of peaks at 3.68, 3.81, 4.06, 4.14, 4.26 and 4.42 min.	
Figure S7 . UPLC–PDA–HRMS–MS/MS data for primary fraction 7. A) Base peak	
chromatogram (top) and UV/vis (190–500 nm) chromatogram (bottom). B) HRMS	S12
spectrum of peaks at 4.24 and 4.41 min.	
Figure S8. UPLC–PDA–HRMS–MS/MS data for primary fraction 9. A) Base peak	
chromatogram (top) and UV/vis (190–500 nm) chromatogram (bottom). B) HRMS	S 13
spectrum of peaks at 3.79 and 4.24 min.	

Figure S9. UPLC-PDA-HRMS-MS/MS data for primary fraction 10. A) Base peak chromatogram (top) and UV/vis (190-500 nm) chromatogram (bottom). B) S14 HRMS spectrum of peaks at 3.47, 3.70, 3.80 and 4.25 min. Figure S10. UPLC-PDA-HRMS-MS/MS data for primary fraction 11. A) Base peak chromatogram (top) and UV/vis (190–500 nm) chromatogram (bottom). B) S15 HRMS spectrum of peaks at 3.49, 3.70, 3.82, 4.02 and 4.22 min. Figure S11. UPLC-PDA-HRMS-MS/MS data for primary fraction 12. A) Base peak chromatogram (top) and UV/vis (190–500 nm) chromatogram (bottom). B) S16 HRMS spectrum of peaks at 3.24, 3.73, 3.81, 4.01, 4.25 and 4.42 min. Figure S12. UPLC-PDA-HRMS-MS/MS data for primary fraction 13. A) Base peak chromatogram (top) and UV/vis (190–500 nm) chromatogram (bottom). B) S17 HRMS spectrum of peaks at 3.74 and 4.24 min. Figure S13. UPLC-PDA-HRMS-MS/MS data for primary fraction 14. A) Base

peak chromatogram (top) and UV/vis (190–500 nm) chromatogram (bottom). B) S18 HRMS spectrum of peaks at 3.73 and 4.22 min.

Figure S14. UPLC–PDA–HRMS–MS/MS data for primary fraction 15. A) Base peak chromatogram (top) and UV/vis (190–500 nm) chromatogram (bottom). B) S19 HRMS spectrum of peaks at 3.40, 3.73 and 4.09 min.

Figure S15. UPLC–PDA–HRMS–MS/MS data for primary fraction 16. A) Base peak chromatogram (top) and UV/vis (190–500 nm) chromatogram (bottom). B) S20 HRMS spectrum of peaks at 2.71, 2.88, 3.01, 3.40, 3.73 and 4.79 min.

Figure S16. UPLC–PDA–HRMS–MS/MS data for primary fraction 17. A) Base peak chromatogram (top) and UV/vis (190–500 nm) chromatogram (bottom). B) S21 HRMS spectrum of peaks at 2.68, 2.84, 3.37 and 3.74 min.

Figure S17. Molecular network of 17 primary fractions from *S. decora*, generated from analysis of MS² data via the Global Natural Products Social Molecular S22 Networking (GNPS; http://gnps.ucsd.edu) tool.

Page

Figure S18. Herbarium specimen of Salvia decora collected by Dr. BaldomeroS23Esquivel-Rodríguez from Coyomeapan, Puebla, Mexico, 18°19'85" N, 97°3'26" W,in December 2016.

Figure S19. ¹ H NMR (CDCl ₃ , 500 MHz) spectrum of 1	S24
Figure S20. ¹³ C NMR (CDCl ₃ , 125 MHz) spectrum of 1	S24
Figure S21. COSY NMR (CDCl ₃ , 500 MHz) spectrum of 1	S25
Figure S22. HSQC NMR (CDCl ₃ , 500 MHz) spectrum of 1	S25
Figure S23. HMBC NMR (CDCl ₃ , 500 MHz) spectrum of 1	S26
Figure S24. NOESY NMR (CDCl ₃ , 500 MHz) spectrum of 1	S26
Figure S25 . ¹ H NMR (acetone- d_6 , 700 MHz) spectrum of 2	S27
Figure S26. APT NMR (acetone- d_6 , 175 MHz) spectrum of 2	S27
Figure S27. COSY NMR (acetone- d_6 , 700 MHz) spectrum of 2	S28
Figure S28. HSQC NMR (acetone- d_6 , 700 MHz) spectrum of 2	S28
Figure S29. HMBC NMR (acetone- d_6 , 700 MHz) spectrum of 2	S29
Figure S30. NOESY NMR (DMSO- d_6 , 400 MHz) spectrum of 2	S29
Figure S31. ¹ H NMR (CDCl ₃ , 700 MHz) spectrum of 3	S30
Figure S32. APT (CDCl ₃ , 175 MHz) spectrum of 3	S30
Figure S33. COSY NMR (CDCl ₃ , 700 MHz) spectrum of 3	S 31
Figure S34. HSQC NMR (CDCl ₃ , 700 MHz) spectrum of 3	S 31
Figure S35. HMBC NMR (CDCl ₃ , 700 MHz) spectrum of 3	S 32
Figure S36. NOESY NMR (CDCl ₃ , 700 MHz) spectrum of 3	S 32
Figure S37. ¹ H NMR (CDCl ₃ , 700 MHz) spectrum of 4	S 33
Figure S38. APT (CDCl ₃ , 175 MHz) spectrum of 4	S 33
Figure S39. ¹ H NMR (CDCl ₃ , 700 MHz) spectrum of 5	S34
Figure S40. APT (CDCl ₃ , 175 MHz) spectrum of 5	S34
Figure S41. ¹ H NMR (CD ₃ OD, 700 MHz) spectrum of 6	S35

	Page
Figure S42. APT (CD ₃ OD, 175 MHz) spectrum of 6	S35
Figure S43. ¹ H NMR spectrum of the acetone extract and fractions F1-F4, F6,	S 36
F8, F9-F11 and F14-F17. The orange boxes highlight signals attributed to	
clerodane type diterpenoids.	
Figure S44. DFT B3LYP/DGDZVP geometry optimized conformers 3a-3d	S 38
at 298 K and 1 atm.	
Table S1. Crystal data and structure refinement for 1, co-crystal 1-2, and 4.	S39

Figure S1. UPLC–PDA–HRMS–MS/MS data for primary fraction 1. A) Base peak chromatogram (top) and UV/vis (190–500 nm) chromatogram (bottom). B) HRMS spectrum of peak at 7.22 min.

Figure S2. UPLC–PDA–HRMS–MS/MS data for primary fraction 2. A) Base peak chromatogram (top) and UV/vis (190–500 nm) chromatogram (bottom). B) HRMS spectrum of peaks at 7.13, 7.20, 7.29 and 7.42 min.

Figure S3. UPLC–PDA–HRMS–MS/MS data for primary fraction 3. A) Base peak chromatogram (top) and UV/vis (190–500 nm) chromatogram (bottom). B) HRMS spectrum of peak at 7.43 min.

A

Figure S4. UPLC–PDA–HRMS–MS/MS data for primary fraction 4. A) Base peak chromatogram (top) and UV/vis (190–500 nm) chromatogram (bottom). B) HRMS spectrum of peaks at 3.03, 3.63, 5.14 and 5.43 min.

Figure S5. UPLC–PDA–HRMS–MS/MS data for primary fraction 5. A) Base peak chromatogram (top) and UV/vis (190–500 nm) chromatogram (bottom). B) HRMS spectrum of peaks at 4.04, 4.12, 4.32, 4.40 and 4.65 min.

02/03/18 20:23:55

Figure S6. UPLC–PDA–HRMS–MS/MS data for primary fraction 6. A) Base peak chromatogram (top) and UV/vis (190–500 nm) chromatogram (bottom). B) HRMS spectrum of peaks at 3.68, 3.81, 4.06, 4.14, 4.26 and 4.42 min.

Figure S7. UPLC–PDA–HRMS–MS/MS data for primary fraction 7. A) Base peak chromatogram (top) and UV/vis (190–500 nm) chromatogram (bottom). B) HRMS spectrum of peaks at 4.24 and 4.41 min.

Figure S8. UPLC–PDA–HRMS–MS/MS data for primary fraction 9. A) Base peak chromatogram (top) and UV/vis (190–500 nm) chromatogram (bottom). B) HRMS spectrum of peaks at 3.79 and 4.24 min.

Figure S9. UPLC–PDA–HRMS–MS/MS data for primary fraction 10. A) Base peak chromatogram (top) and UV/vis (190–500 nm) chromatogram (bottom). B) HRMS spectrum of peaks at 3.47, 3.70, 3.80 and 4.25 min.

Figure S10. UPLC–PDA–HRMS–MS/MS data for primary fraction 11. A) Base peak chromatogram (top) and UV/vis (190–500 nm) chromatogram (bottom). B) HRMS spectrum of peaks at 3.49, 3.70, 3.82, 4.02 and 4.22 min.

Figure S11. UPLC–PDA–HRMS–MS/MS data for primary fraction 12. A) Base peak chromatogram (top) and UV/vis (190–500 nm) chromatogram (bottom). B) HRMS spectrum of peaks at 3.24, 3.73, 3.81, 4.01, 4.25 and 4.42 min.

Figure S12. UPLC–PDA–HRMS–MS/MS data for primary fraction 13. A) Base peak chromatogram (top) and UV/vis (190–500 nm) chromatogram (bottom). B) HRMS spectrum of peaks at 3.74 and 4.24 min.

Figure S13. UPLC–PDA–HRMS–MS/MS data for primary fraction 14. A) Base peak chromatogram (top) and UV/vis (190–500 nm) chromatogram (bottom). B) HRMS spectrum of peaks at 3.73 and 4.22 min.

Figure S14. UPLC–PDA–HRMS–MS/MS data for primary fraction 15. A) Base peak chromatogram (top) and UV/vis (190–500 nm) chromatogram (bottom). B) HRMS spectrum of peaks at 3.40, 3.73 and 4.09 min.

Figure S15. UPLC–PDA–HRMS–MS/MS data for primary fraction 16. A) Base peak chromatogram (top) and UV/vis (190–500 nm) chromatogram (bottom). B) HRMS spectrum of peaks at 2.71, 2.88, 3.01, 3.40, 3.73 and 4.79 min.

A

Figure S16. UPLC–PDA–HRMS–MS/MS data for primary fraction 17. A) Base peak chromatogram (top) and UV/vis (190–500 nm) chromatogram (bottom). B) HRMS spectrum of peaks at 2.68, 2.84, 3.37 and 3.74 min.

Figure S17. Molecular network of 17 primary fractions from *S. decora*, generated from analysis of MS² data via the Global Natural Products Social Molecular Networking (GNPS; http://gnps.ucsd.edu) tool.

Figure S18. Herbarium specimen of *Salvia decora* collected by Dr. Baldomero Esquivel-Rodríguez from Coyomeapan, Puebla, Mexico, 18°19'85" N, 97°3'26" W, in December 2016.

Figure S20. ¹³C NMR (CDCl₃, 125 MHz) spectrum of 1

Figure S22. HSQC NMR (CDCl₃, 500 MHz) spectrum of 1

Figure S24. NOESY NMR (CDCl₃, 500 MHz) spectrum of 1

Figure S26. APT NMR (acetone-d₆, 175 MHz) spectrum of 2

Figure S30. NOESY NMR (DMSO-*d*₆, 400 MHz) spectrum of 2

Figure S43. ¹H NMR spectrum of the acetone extract and fractions F1-F4, F6, F8, F9-F11 and F14-17. The orange boxes highlight signals attributed to clerodane type diterpenoids.

Figure S43 (continued). ¹H NMR spectrum of the acetone extract and fractions F1-F4, F6, F8, F9-F11 and F14-17. The orange boxes highlight signals attributed to clerodane type diterpenoids.

3a (*P* = 36.66 %)

3b (*P* = 36.47 %)

Figure S44. DFT B3LYP/DGDZVP geometry optimized conformers 3a-3d at 298 K and 1 atm.

compound	1, 0.869(ketone),	4 (285ERB18)
	0.131(water)	
	(34ERB19)	
Empirical formula	C _{22.6} H _{25.48} O ₇	$C_{20}H_{22}O_{6}$
Formula weight	409.19	358.37
Temperature (K)	100(2)	100(2)
Wavelength (Å)	1.54178	1.54178
Crystal system	Monoclinic	Orthorhombic
Space group	$P2_1$	$P2_{1}2_{1}2_{1}$
a (Å)	12.3816(4)	9.1387(10)
b (Å)	7.6040(3)	24.286(3)
c (Å)	21.7468(7)	38.773(4)
α (°)	90	90
β(°)	101.7694(12)	90
γ (°)	90	90
Volume (Å ³)	2004.41(12)	8605.5(16)
Ζ	4	20
Dcalc (Mg/m ³)	1.356	1.383
Absorption	0.834	0.845
coefficient (mm ⁻¹)		
F(000)	868	3800
Crystal size (mm ³)	$0.452 \times 0.273 \times 0.128$	$0.185 \times 0.154 \times 0.153$
Theta range for data	2.075 to 70.060	2.146 to 69.123
collection (°)		
Index ranges	-15<=h<=15, -	-11<=h<=11, -28<=k<=29,
	9<=k<=8, -26<=l<=26	-46<=l<=46
Total Reflections collected	35743	90876
Independent reflections	7010 [$R_{int} = 0.0303$]	16015 [$R_{int} = 0.0386$]
Completeness to	100.0 %	99.9%
$\frac{1}{10000000000000000000000000000000000$	7010 / 56 / 560	16015 / 5941 / 2127
parameters	/010 / 30 / 309	10013 / 3841 / 2137
Goodness-of-fit on F^2	1.047	1.094
Final R indices	$R_1^a = 0.0353,$	$R_1^a = 0.0583,$
$[I > 2\sigma(I)]$	$wR_2^b = 0.1006$	$wR_2^b = 0.1399$
R indices (all data)	$R_1^a = 0.0356,$	$R_1^a = 0.0600,$
	$wR_2^b = 0.1010$	$wR_2^b = 0.1413$
Largest diff. peak	0.648 and -0.222	0.335 and -0.310
and hole (e.Å ⁻³)		
Absolute structure	0.01(5)	0.07(3)
parameter, Parsons-		
Flool noromotor		

 Table S1. Crystal data and structure refinement for 1, co-crystal 1-2, and 4.

$${}^{a}R_{1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|.$$

$${}^{b}wR_{2} = [\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum (F_{o}^{2})^{2}]^{1/2}$$