Supporting Information

The Chemistry of Kratom [Mitragyna speciosa]: Updated Characterization

Data and Methods to Elucidate Indole and Oxindole Alkaloids

Laura Flores-Bocanegra, Huzefa A. Raja, Tyler N. Graf, Mario Augustinović, E. Diane Wallace,

Shabnam Hematian, Joshua J. Kellogg, Daniel A. Todd, Nadja B. Cech, and Nicholas H.

 $Oberlies^*$

Index of Figures

Figure S1. Histogram showing the number of papers about the pharmacological properties for kratom (presumably an extract of <i>M. speciosa</i>) and/or the kratom alkaloids mitragynine, 7-hydroxymitragynine and others, published in the past 20 years
Figure S2. Schematic representation of the 54 compounds that have been reported from <i>Mitragyna speciosa</i> , showing the interrelatedness of the structures
Figure S3. Phylogenetic tree (RAxML; -lnL = 2220.13) inferred from the DNA sequence data from the plastid region (<i>matK</i> ; 1525 bp)
Figure S4. Graphical overview of the BLAST results (January 2020) in BOLD database using <i>matK</i> (core locus of The Consortium for the Barcode of Life; CBOL)
Figure S5. Graphical overview of the BLAST results (January 2020) in BOLD database using <i>matK</i> (core locus of The Consortium for the Barcode of Life; CBOL)
Figure S6. Phylogenetic tree (RAxML; -lnL = 1252.61) inferred from the DNA sequence data from the Internal Transcribed Spacer region (ITS; 662 bp)
Figure S7. Chromatographic profiles of the two sources of kratom, specifically A) Green Maeng Da (K49) and B) White Jongkong (K52)
Figure S8. Workflow for the isolation of the alkaloids from the kratom product termed Green Maeng Da (i.e. sample K49)
Figure S9. Workflow for the isolation of the alkaloids from the kratom product termed White Jongkong (i.e. sample K52)
Figure S10. UPLC-HRESIMS data for mitragynine (1)
Figure S11. UPLC-HRESIMS data for speciociliatine (2)
Figure S12. UPLC-HRESIMS data for speciogynine (3)
Figure S13. UPLC-HRESIMS data for mitraciliatine (4)

Figure S14. ¹ H and ¹³ C NMR spectra for mitragynine (1) (CDCl ₃ , 400 MHz and 100 MHz, respectively)
Figure S15. ¹ H and ¹³ C NMR spectra for speciociliatine (2) (CDCl ₃ , 400 MHz and 100 MHz, respectively)
Figure S16. ¹ H and ¹³ C NMR spectra for speciogynine (3) (CDCl ₃ , 400 MHz and 100 MHz, respectively). 20
Figure S17. ¹ H and ¹³ C NMR spectra for mitraciliatine (4) (CDCl ₃ , 400 MHz and 100 MHz, respectively)
 Figure S18. Representation for the different orientations of H-3 with respect to the nitrogen non-bonding electron pair for the most stable conformation of mitragynine (1) and speciociliatine (2).
Figure S19. Comparison of the ECD spectra acquired in CH ₃ OH for A) mitragynine (1), B) speciociliatine (2), C) speciogynine (3), and D) mitraciliatine (4)
Figure S20. UPLC-HRESIMS data for paynantheine (5)
Figure S21. UPLC-HRESIMS data for isopaynantheine (6)
Figure S22. UPLC-HRESIMS data for epiallo-isopaynantheine (7)
Figure S23. ¹ H and ¹³ C NMR spectra for paynantheine (5) (CDCl ₃ , 400 MHz and 100 MHz, respectively)
Figure S24. ¹ H and ¹³ C NMR spectra for isopaynantheine (6) (CDCl ₃ , 400 MHz and 100 MHz, respectively)
Figure S25. ¹ H and ¹³ C NMR spectra for epiallo-isopaynantheine (7) (CDCl ₃ , 400 MHz and 100 MHz, respectively). 28
Figure S26. COSY spectrum for epiallo-isopaynantheine (7) (CDCl ₃ , 400 MHz)29
Figure S27. HSQC spectrum for epiallo-isopaynantheine (7) (CDCl ₃ , 400 MHz)
Figure S28. HMBC spectrum for epiallo-isopaynantheine (7) (CDCl ₃ , 400 MHz)
Figure S29. NOESY spectrum for isopaynantheine (6) (CDCl ₃ , 400 MHz)
Figure S30. NOESY spectrum for epiallo-isopaynantheine (7) (CDCl ₃ , 400 MHz)
Figure S31. Observed NOESY correlations for compounds 6 , and 7 , and the distances for the key positions in the diastereoisomers
Figure S32. Nine conformers for the prediction of the ECD spectrum for 7
Figure S33. Comparison of the ECD spectra acquired in CH ₃ OH for A) paynantheine (5), B) isopaynantheine (6), and C) epiallo-isopaynantheine (7)
Figure S34. NP-HPLC chromatograms for compounds 5, 6, and 7
Figure S35. UPLC-HRESIMS data for mitragynine- <i>N</i> (4)-oxide (8)
Figure S36. UPLC-HRESIMS data for speciociliatine- <i>N</i> (4)-oxide (9)
Figure S37. UPLC-HRESIMS data for isopaynantheine- <i>N</i> (4)-oxide (10)
Figure S38. UPLC-HRESIMS data for epiallo-isopaynantheine-N(4)-oxide (11)
Figure S39. ¹ H and ¹³ C NMR spectra for mitragynine- <i>N</i> (4)-oxide (8) (CDCl ₃ , 400 MHz and 100 MHz, respectively)

Figure S40. ¹ H and ¹³ C NMR spectra for speciociliatine- <i>N</i> (4)-oxide (9) (CDCl ₃ , 400 MHz and 100 MHz, respectively)
Figure S41. ¹ H and ¹³ C NMR spectra for isopaynantheine- <i>N</i> (4)-oxide (10) (CDCl ₃ , 400 MHz and 100 MHz, respectively)
Figure S42. ¹ H and ¹³ C NMR spectra for epiallo-isopaynantheine- <i>N</i> (4)-oxide (11) (CDCl ₃ , 400 MHz and 100 MHz, respectively)
Figure S43. COSY spectrum for epiallo-isopaynantheine-N(4)-oxide (11) (CDCl ₃ , 400 MHz). 45
Figure S44. HSQC spectrum for epiallo-isopaynantheine-N(4)-oxide (11) (CDCl ₃ , 400 MHz). 46
Figure S45. HMBC spectrum for epiallo-isopaynantheine-N(4)-oxide (11) (CDCl ₃ , 400 MHz).47
Figure S46. A) Comparison of the ECD spectra for <i>N</i> -oxides (10 and 11), and indole alkaloids (6 and 7); B) Comparison of the ¹ H NMR of 7, and that of 11 after incubation with sulfuric acid.
 Figure S47. Comparison of the ECD spectra acquired in CH₃OH for A) mitragynine-<i>N</i>(4)-oxide (8), B) speciociliatine-<i>N</i>(4)-oxide (9), C) isopaynantheine-<i>N</i>(4)-oxide (10), and D) epiallo-isopaynantheine-<i>N</i>(4)-oxide (11)
Figure S48. UPLC-HRESIMS data for speciofoline (12)
Figure S49. UPLC-HRESIMS data for isorotundifoleine (13)
Figure S50. UPLC-HRESIMS data for isospeciofoleine (14)
Figure S51. ¹ H and ¹³ C NMR spectra for speciofoline (12) (CDCl ₃ , 400 MHz and 100 MHz, respectively)
Figure S52. ¹ H and ¹³ C NMR spectra for isorotundifoleine (13) (CDCl ₃ , 500 MHz and 125 MHz, respectively)
Figure S53. ¹ H and ¹³ C NMR spectra for isospeciofoleine (14) (CDCl ₃ , 500 MHz and 125 MHz, respectively)
Figure S54. Comparison of the ECD spectra acquired in CH ₃ OH for A) speciofoline (12), B) isorotundifoleine (13), and C) isospeciofoleine (14)
Figure S55. UPLC-HRESIMS data for corynoxine A (15)
Figure S56. UPLC-HRESIMS data for corynoxine B (16)
Figure S57. UPLC-HRESIMS data for 3-epirhynchophylline (17)
Figure S58. UPLC-HRESIMS data for 3-epicorynoxine B (18)
Figure S59. UPLC-HRESIMS data for corynoxeine (19)
Figure S60. ¹ H and ¹³ C NMR spectra for corynoxine A (15) (CDCl ₃ , 500 MHz and 125 MHz, respectively)
Figure S61. ¹ H and ¹³ C NMR spectra for corynoxine B (16) (CDCl ₃ , 500 MHz and 125 MHz, respectively)
Figure S62. Monitoring the epimerization of corynoxine B (16) to corynoxine A (15) by ¹ H NMR (CDCl ₃ , 500 MHz), and the proposed mechanism of epimerization via an intramolecular Mannich reaction
Figure S63. ¹ H and ¹³ C NMR spectra for 3-epirhynchophylline (17) (CDCl ₃ , 500 MHz and 125 MHz, respectively)
Figure S64. COSY spectrum for 3-epirhynchophylline (17) (CDCl ₃ , 500 MHz)

Figure S65. HSQC spectrum for 3-epirhynchophylline (17) (CDCl ₃ , 500 MHz)65
Figure S66. HMBC spectrum for 3-epirhynchophylline (17) (CDCl ₃ , 500 MHz)66
Figure S67. NOESY spectrum for 3-epirhynchophylline (17) (CDCl ₃ , 500 MHz)67
Figure S68. Six conformers used for the prediction of the ECD spectrum for 17
Figure S69. ¹ H and ¹³ C NMR spectra for 3-epicorynoxine B (18) (CDCl ₃ , 500 MHz and 125 MHz, respectively)
Figure S70. COSY spectrum for 3-epicorynoxine B (18) (CDCl ₃ , 500 MHz)70
Figure S71. HSQC spectrum for 3-epicorynoxine B (18) (CDCl ₃ , 500 MHz)71
Figure S72. HMBC spectrum for 3-epicorynoxine B (18) (CDCl ₃ , 500 MHz)72
Figure S73. NOESY spectrum for 3-epicorynoxine B (18) (CDCl ₃ , 500 MHz)73
Figure S74. Two conformers used for the prediction of the ECD spectrum for 1874
Figure S75. ¹ H and ¹³ C NMR spectra for corynoxeine (19) (CDCl ₃ , 500 MHz and 125 MHz, respectively)
Figure S76. Comparison of the ECD spectra acquired in CH ₃ OH for A) corynoxine A (15), B) 3-epirhynchophylline (17), C) 3-epicorynoxine B (18), and D) corynoxeine (19)
Figure S77. Comparison of the ¹ H NMR before (black) and after (red) the acquisition of the VCD experiment. A) mitragynine (1), B) isopaynantheine (6), C) epiallo-isopaynantheine (7), D) corynoxine A (15), E) 3-epirhyncophylline (17), and F) 3-epicorynoxine B (18)78

Index of Tables

Table S1. Uncorrected p-Distances from the <i>trnH-psbA</i> Region Indicating that Kratom Samples Barcoded in Our Study Have Higher Sequence Similarity with <i>Mitragyna speciosa</i>
Table S2. Uncorrected p-Distances from the ITS Region Indicating that Kratom Samples Barcoded in Our Study Have Higher Sequence Similarity with <i>Mitragyna speciosa</i>
Table S3. Primers and PCR Protocols for Plant Identification. 12
Table S4. Comparison of NMR Data for Compounds 1-4 (CDCl ₃ , 100 MHz and 400 MHz) 22
Table S5. Comparison of NMR Data for Compounds 5-7 (CDCl ₃ , 100 MHz and 400 MHz) 36
Table S6. Comparison of NMR Data for Compounds 8-11 (CDCl ₃ , 100 MHz and 400 MHz) 49
Table S7. Comparison of NMR Data for Compounds 12-14 (CDCl ₃ , 125 MHz and 500 MHz) 56
Table S8. Comparison of NMR Data for Compounds 15-19 (CDCl ₃ , 125 MHz and 500 MHz) 76
Table S9. Confidence Level Data for the Comparison of Calculated and Experimental VCD Spectra. 77

Figure S1. Histogram showing the number of papers about the pharmacological properties for kratom (presumably an extract of *M. speciosa*) and/or the kratom alkaloids mitragynine, 7-hydroxymitragynine and others, published in the past 20 years. This search was performed using "SciFinder" and "PubMed" with the research topic "Kratom" and "*Mitragyna speciosa*". The search was refined by looking only at those papers published that applied *in vitro* and/or *in vivo* pharmacological studies as well as those for case reports.

Figure S2. Schematic representation of the 54 compounds that have been reported from *Mitragyna speciosa*, showing the interrelatedness of the structures. Compounds to the right are indole alkaloids, while those to the left are oxindole alkaloids. Compounds underlined in blue are commercially available (as of 2019); however, we strongly recommend verifying both the purity and identity of any purchased standards.

Figure S3. Phylogenetic tree (RAxML; $-\ln L = 2220.13$) inferred from the DNA sequence data from the plastid region (*matK*; 1525 bp). K49 and K52 form a strongly supported clade with published sequence data of *Mitragyna speciosa*, including a partial sequence of *matK* from the *Mitragyna speciosa* genome assembly; BioProject: PRJNA325670 (Center for Food Safety and Applied Nutrition (CFSAN), part of the FDA). Numbers refer to RAxML bootstrap support values $\geq 70\%$ based on 1000 replicates. Clades with samples from the present study are highlighted in gray. Bar indicates nucleotide substitutions per site. The tree was rooted to *Nauclea officinalis*

Re	esults Summar	у								2	Downloa
Query unlabele	ID led_sequence	Best ID Mitragyna	speciosa	Search DB MATK_RBCL							
Qu To	uery: unlabeled op Hit: Gentiana	l_sequence ales <i>- Mitragyna</i>	speciosa								
100 98 J 96 94						1.0 No.5					
⁹² Scores Higher	1 12 23 5 indicate the deg r is better. 999 Match	34 45 56 gree of similarity NES	67 78 89 between the q	9 uery sequence a	nd hits.	0.0 1 12 E-Values are an ir randomly. Lower	23 34 45 ndicator of the like is better.	56 67 elihood tha	78 89 at a given m	atch was gen	erated
92 Scores Higher TOP Rank	1 12 23 sindicate the deg r is better. 999 Match Phylum	34 45 56 gree of similarity DES Class	67 78 89 between the qu	9 uery sequence a Family	nd hits. Genus	0.0 1 12 E-Values are an in randomly. Lower Species	23 34 45 ndicator of the like is better. Subspecies	56 67 elihood tha Score	78 89 at a given m Similarity	aatch was gen E-Value	erated Stat
92 1 Scores Higher TOP Rank	1 12 23 5 indicate the deg r is better. 999 Match Phylum Magnoliophyta	34 45 56 gree of similarity DES Class Magnoliopsida	67 78 89 between the q Order Gentianales	a uery sequence al Family Rubiaceae	nd hits. Genus <i>Mitragyna</i>	0.0 1 12 E-Values are an in randomly. Lower	23 34 45 ndicator of the like is better. Subspecies	56 67 elihood tha Score 784	78 89 at a given m Similarity 99.87	eatch was gene E-Value	erated Stat Priv
92 1 Scores Higher TOP Rank 1 2	1 12 23 is indicate the degr is better. 9 99 Match Phylum Magnoliophyta	34 45 56 gree of similarity Class Magnoliopsida Magnoliopsida	67 78 89 between the qu Order Gentianales Gentianales	e uery sequence al Family Rubiaceae Rubiaceae	nd hits. Genus Mitragyna Neonauclea	0.0 1 12 E-Values are an in randomly. Lower Species speciosa	23 34 45 ndicator of the like is better. Subspecies	56 67 elihood tha Score 784 760	78 89 at a given m Similarity 99.87 98.35	E-Value	erated Stat Priv Publi e
92 1 Scores Higher TOP Rank 1 2 3	1 12 23 indicate the degr is better. 999 Match Phylum Magnoliophyta Magnoliophyta	34 45 56 gree of similarity Class Magnoliopsida Magnoliopsida	67 78 85 between the q Order Gentianales Gentianales	a uery sequence as Family Rubiaceae Rubiaceae Rubiaceae	nd hits. Genus Mitragyna Neonauclea Hallea	0.0 1 12 E-Values are an in randomly. Lower Species speciosa	23 34 45 ndicator of the like is better. Subspecies	56 67 elihood tha Score 784 760	78 89 at a given m 9 Similarity 9 98.35 9	E-Value 0 0	erated Stat Priv Publ Ea Rela
92 1 Scores Higher TOP Rank 1 2 3 4	1 12 23 indicate the degr is better. 99 Match Phylum Magnoliophyta Magnoliophyta Magnoliophyta	34 45 56 gree of similarity Class Magnoliopsida Magnoliopsida Magnoliopsida	67 78 89 between the q Order Gentianales Gentianales Gentianales	e uery sequence as Family Rubiaceae Rubiaceae Rubiaceae	nd hits. Genus Mitragyna Neonauclea Hallea Mitragyna	0.0 1 12 E-Values are an in randomly. Lower Speciesa Iedermannii	23 34 45 ndicator of the like is better. Subspecies	56 67 elihood tha Score 784 760 760	78 89 at a given m similarity 99.87 98.72 98.35 98.35	E-Value 0 0 0 0	erated Stat Priv Publ Ea Rele Publ
92 1 Scores Higher TOP Rank 1 2 3 4 5	1 12 23 indicate the degr is better. 999 Match Phylum Magnoliophyta Magnoliophyta Magnoliophyta	34 45 56 gree of similarity Class Magnoliopsida Magnoliopsida Magnoliopsida Magnoliopsida	67 78 89 between the q Order 4 Gentianales 4 Gentianales 4 Gentianales 4 Gentianales 4	e uery sequence as Family Rubiaceae Rubiaceae Rubiaceae Rubiaceae	nd hits. Genus Mitragyna Neonauclea Mitragyna Mitragyna	0.0 1 12 E-Values are an in randomly. Lower Species speciosa ledermannii rubrostipulata	23 34 45 ndicator of the like is better. Subspecies	56 67 Score 784 760 760 760 760	78 89 at a given r given r 98.35 - 98.35 - 98.22 -	E-Value 0 0 0 0 0	erated Stat Priv Publ Ea Relo Publ
<pre>92 1 1 1 Scores Higher TOP Rank 1 2 3 4 5 6</pre>	 1 12 23 a indicate the deservice is better. 99 Match Phylum Magnoliophyta Magnoliophyta Magnoliophyta Magnoliophyta Magnoliophyta Magnoliophyta 	34 45 56 gree of similarity Class Magnoliopsida Magnoliopsida Magnoliopsida Magnoliopsida Magnoliopsida	67 78 89 between the quint Order	a a b a a a a b b b b b b b b b b b b b c <t< td=""><td>nd hits. Genus Mitragyna Neonauclea Mitragyna Mitragyna Neonauclea</td><td>0.0 1 12 E-Values are an in randomly. Lower Species Speciosa Iedermannii Iedermannii orientalis</td><td>23 34 45 dicator of the like is better. Subspecies</td><td>56 67 Score 784 760 760 760 760 760 758</td><td>78 89 a given n a 98.87 4 98.72 4 98.72 4 98.72 4 98.72 5 98.72 5 98.72 6 98.72 6 98.72 6</td><td>E-Value 0 0 0 0 0 0</td><td>Star Star Privi Eaa Reli C Publi t t Publi t t</td></t<>	nd hits. Genus Mitragyna Neonauclea Mitragyna Mitragyna Neonauclea	0.0 1 12 E-Values are an in randomly. Lower Species Speciosa Iedermannii Iedermannii orientalis	23 34 45 dicator of the like is better. Subspecies	56 67 Score 784 760 760 760 760 760 758	78 89 a given n a 98.87 4 98.72 4 98.72 4 98.72 4 98.72 5 98.72 5 98.72 6 98.72 6 98.72 6	E-Value 0 0 0 0 0 0	Star Star Privi Eaa Reli C Publi t t Publi t t
<pre>22 1 1 2 2 3 3 4 5 6 7</pre>	 12 23 cindicate the desire is better. 99 Match Phylum Magnoliophyta Magnoliophyta Magnoliophyta Magnoliophyta Magnoliophyta Magnoliophyta Magnoliophyta 	34 45 56 gree of similarity Class Magnoliopsida Magnoliopsida Magnoliopsida Magnoliopsida Magnoliopsida	67 78 89 between the quint Order Gentianales Gentianales Gentianales Gentianales Gentianales	a a a a a a b b b c b c <t< td=""><td>denus Genus Mitragyna Mallea Mallea Mitragyna Mit</td><td>0.0 1 12 E-Values are an in randomly. Lower Species Species Iedermannii Iedermannii orientalis</td><td>23 34 45 ndicator of the like is better. Subspecies</td><td>56 67 Score 784 760 760 760 760 760 760 760 760</td><td>78 89 at a given n a 99.87 4 98.35 4 98.32 4 98.35 4 98.36 4 98.37 4 98.38 4 98.39 4 98.39 4 98.39 4</td><td>E-Value 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>Stat Stat Prik Publi Ea Rele Publi C Publi C Publi C C Publi C C Publi C C C C C C C C C C C C C C C C C C C</td></t<>	denus Genus Mitragyna Mallea Mallea Mitragyna Mit	0.0 1 12 E-Values are an in randomly. Lower Species Species Iedermannii Iedermannii orientalis	23 34 45 ndicator of the like is better. Subspecies	56 67 Score 784 760 760 760 760 760 760 760 760	78 89 at a given n a 99.87 4 98.35 4 98.32 4 98.35 4 98.36 4 98.37 4 98.38 4 98.39 4 98.39 4 98.39 4	E-Value 0 0 0 0 0 0 0 0 0 0 0 0 0	Stat Stat Prik Publi Ea Rele Publi C Publi C Publi C C Publi C C Publi C C C C C C C C C C C C C C C C C C C
92 1 1 2 7 7 8 8 8	 12 23 23 indicate the destribution is better. 99 Match Phylum Magnoliophyta Magnoliophyta Magnoliophyta Magnoliophyta Magnoliophyta Magnoliophyta Magnoliophyta Magnoliophyta Magnoliophyta 	34 45 56 gree of similarity Class Magnoliopsida Magnoliopsida Magnoliopsida Magnoliopsida Magnoliopsida Magnoliopsida	67 78 89 between the q Order Gentianales Gentianales Gentianales Gentianales Gentianales Gentianales	e uery sequence as Family Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae	e Genus Genus Mitragyna Mi	0.0 1 12 E-Values are an in randomly. Lower Speciesa Speciesa I ledermannii C orientalis O cocidentalis D pachyceras	23 34 45 ndicator of the like is better. Subspecies	56 67 Score 784 760 760 760 760 760 756 756 756	78 89 at a given n 99 99.87 90 98.72 90 98.72 90 98.72 90 98.73 90 98.74 90 98.75 90 98.76 90 98.77 90 98.78 90 98.79 90 98.79 90 98.79 90	E-Value 0	Stat Stat Prik Publi Ea Publi C Publi C Publi C C Publi C C C C C C C C C C C C C C C C C C C
92 1 1 2 7 7 8 4 5 6 7 8 9	 1 12 23 cindicate the deservice is better. 99 Match Phylum Magnoliophyta 	34 45 56 gree of similarity Class Magnoliopsida Magnoliopsida Magnoliopsida Magnoliopsida Magnoliopsida Magnoliopsida	67 78 89 between the quint Order Gentianales Gentianales Gentianales Gentianales Gentianales Gentianales Gentianales	a a a a a a a a b b b c b c b c <t< td=""><td>e denus</td><td>0.0 1 12 F-Values are an in randomly. Lower Species Species (1) (1) (1) (1) (1) (1) (1) (1)</td><td>23 34 45 dicator of the like is better. Subspecies</td><td>56 67 Score 784 760 760 758 756 756 756 756</td><td>78 89 a given no 98.87 98.72 98.72 98.72 98.72 98.72 98.72 98.72 98.72 98.72 98.72 98.72 98.72 98.72 98.72 98.72 98.72</td><td>E-Value 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>erated</td></t<>	e denus	0.0 1 12 F-Values are an in randomly. Lower Species Species (1) (1) (1) (1) (1) (1) (1) (1)	23 34 45 dicator of the like is better. Subspecies	56 67 Score 784 760 760 758 756 756 756 756	78 89 a given no 98.87 98.72 98.72 98.72 98.72 98.72 98.72 98.72 98.72 98.72 98.72 98.72 98.72 98.72 98.72 98.72 98.72	E-Value 0 0 0 0 0 0 0 0 0 0 0 0 0	erated

Figure S4. Graphical overview of the BLAST results (January 2020) in BOLD database using *matK* (core locus of The Consortium for the Barcode of Life; CBOL). Sample K49 shows \geq 99% similarity with *Mitragyna speciosa*. Only the top 10 results are shown.

	STSTEMS				DATABASES	DENTIFICATION	TAXONOMY	WORKE	ENCH	RESUURCES	LOGIN
											e
Re	sults Summar	У								2	Download
Query	ID	Best ID		Search DB							
uniabele	ea_sequence	Mitragyna	speciosa	MATK_RBCL							
Qu Toj	ery: unlabeled p Hit: Gentiana	_sequence lles <i>- Mitragyna</i>	speciosa								
Scor	e Summa	arv				E-Value Si	Immary				
100	e barrin					1.0	arriniary				
98			D. M. A.	the state							
96 Score				111		0.5					
						ш					
94			1911 - D								
94 92 1	12 23	34 45 56	67 78 89	9		0.0	23 34 45	56 67	78 89		
94 92 1 Scores	12 23 indicate the deg	34 45 56 gree of similarity	67 78 89 between the q	e uery sequence ar	nd hits.	0.0 1 12 E-Values are an i	23 34 45 ndicator of the lik	56 67 elihood th	78 89 at a given n	natch was gen	erated
94 92 1 Scores Higher	12 23 indicate the deg is better.	34 45 56 gree of similarity	67 78 89 between the q	a uery sequence ar	nd hits.	0.0 1 12 E-Values are an i randomly. Lower	23 34 45 ndicator of the lik is better.	56 67 elihood th	78 89 at a given n	natch was gen	erated
94 92 1 Scores Higher TOP	12 23 indicate the deg is better. 99 Match	34 45 56 gree of similarity	67 78 89 between the q	e uery sequence ar	nd hits.	0.0 1 12 E-Values are an i randomly. Lower	23 34 45 ndicator of the lik · is better.	56 67 elihood th	78 89 at a given n	natch was gen	erated
94 92 1 Scores Higher TOP Rank	12 23 indicate the deg is better. 99 Match Phylum	34 45 56 gree of similarity NCS Class	67 78 89 between the q Order	e uery sequence ar Family	nd hits. Genus	0.0 1 12 E-Values are an i randomly. Lower Species	23 34 45 ndicator of the lik is better. Subspecies	56 67 elihood th Score	78 89 at a given n Similarity	natch was gen 7 E-Value	erated Stat
94 92 1 Scores Higher TOP Rank	12 23 indicate the deg is better. 99 Match Phylum Magnoliophyta	34 45 56 gree of similarity DES Class Magnoliopsida	67 78 85 between the q Order Gentianales	e uery sequence ar Family Rubiaceae	Genus Mitragyna	0.0 1 12 E-Values are an i randomly. Lower Species Speciosa	23 34 45 ndicator of the lik is better. Subspecies	56 67 elihood th Score 854	78 89 at a given n Similarity 99.42	natch was gen E-Value 0	erated Stat Priv
94 92 1 Scores Higher TOP Rank 1 2	12 23 indicate the deg is better. 99 Match Phylum Magnoliophyta Magnoliophyta	34 45 56 gree of similarity DES Class Magnoliopsida Magnoliopsida	67 78 85 between the q Order Gentianales Gentianales	Family Rubiaceae	eenus Mitragyna Mitragyna	0.0 1 12 E-Values are an i randomly. Lower Species rubrostipulata	23 34 45 ndicator of the lik is better. Subspecies	56 67 elihood the Score 854 832	78 89 at a given n Similarity 99.42 98.15	E-Value	erated State Priv Publi:
94 92 1 Scores Higher TOP Rank 1 2 3	12 23 indicate the deg is better. 99 Match Phylum Magnoliophyta Magnoliophyta	34 45 56 gree of similarity DES Class Magnoliopsida Magnoliopsida	67 78 89 between the q Order Gentianales Gentianales	Family Rubiaceae Rubiaceae Rubiaceae	d hits. Genus Mitragyna Mitragyna Hallea	0.0 1 12 E-Values are an i randomly. Lower Speciesa speciosa rubrostipulata	23 34 45 ndicator of the lik is better. Subspecies	56 67 elihood th. 854 832 828	78 89 at a given n 9 Similarity 99.42 98.15 9 98.59 9	e-Value 0 0 0	erated State Priv Publi: Ear Rele
94 92 1 Scores Higher TOP Rank 1 2 3 4	12 23 indicate the deg is better. 99 Match Phylum Magnoliophyta Magnoliophyta Magnoliophyta	34 45 56 gree of similarity Class Magnoliopsida Magnoliopsida Magnoliopsida Magnoliopsida	67 78 89 between the q Order Gentianales Gentianales Gentianales Gentianales	Family Rubiaceae Rubiaceae Rubiaceae Rubiaceae	d hits. Genus Mitragyna Mitragyna i Hallea Cephalanthus	0.0 1 12 E-Values are an i randomly. Lower Species rubrostipulata ledermannii occidentalis	23 34 45 ndicator of the lik i is better. Subspecies	56 67 elihood th 854 832 828 826	78 89 at a given n 99.42 98.15 98.59 98.59 97.8	E-Value 0 0 0 0 0 0 0 0	erated State Priv Publi: Ear Rele Publi:
94 92 1 Scores Higher TOP Rank 1 2 3 4 5	12 23 indicate the degis better. 99 Match Phylum Magnoliophyta Magnoliophyta Magnoliophyta Magnoliophyta	34 45 56 gree of similarity Class Magnoliopsida Magnoliopsida Magnoliopsida Magnoliopsida	67 78 89 between the q Order Gentianales Gentianales Gentianales Gentianales	Family Rubiaceae Rubiaceae	d hits. Genus Mitragyna Mitragyna Hallea Cephalanthus Corynanthe		23 34 45 ndicator of the lik is better. Subspecies	56 67 elihood th 854 832 828 828 826 826	78 89 at a given n 9 99.42 9 98.59 9 97.8 97.8	e E-Value 0 0 0 0 0 0	erated Stat Priv Publis Ear Rele Publis Ear
94 92 1 Scores Higher TOP Rank 1 2 3 4 5 6	12 23 indicate the degis better. 99 Match Phylum Magnoliophyta Magnoliophyta Magnoliophyta Magnoliophyta	34 45 56 gree of similarity Class Magnoliopsida Magnoliopsida Magnoliopsida Magnoliopsida Magnoliopsida	67 78 89 between the q Order Gentianales Gentianales Gentianales Gentianales Gentianales	Family Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae	d hits. Genus Mitragyna Mitragyna i Hallea Cephalanthus Corynanthe Nauclea	0.0 1 12 E-Values are an ir andomly. Lower Speciesa I speciosa I ledermannii Occidentalis D pachyceras	23 34 45 ndicator of the lik is better. Subspecies	56 67 elihood th 854 832 828 826 826 824	78 89 at a given n 99.42 99.42 98.59 97.8 97.8 97.69 97.69	e F-Value C F-Value C C C C C C C C C C C C C C C C C C C	erated Stati Priv Publis Ear Rele Publis Ear Rele
94 92 1 Scores Higher Rank 1 2 3 3 4 5 6 7	12 23 indicate the degisis better: 99 Match Phylum Magnoliophyta Magnoliophyta Magnoliophyta Magnoliophyta Magnoliophyta	34 45 56 gree of similarity Class Magnoliopsida Magnoliopsida Magnoliopsida Magnoliopsida Magnoliopsida Magnoliopsida	67 78 89 between the q Gentianales Gentianales Gentianales Gentianales Gentianales Gentianales	Family Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae	d hits. Genus Mitragyna Mitragyna Mitragyna Cephalanthua Corynanthe Nauclea	0.0 1 12 1 12 12 F-Values are an irradomly. Lower 1 1 Species 1 1 species 1 1 1 species 1 1 1 species 1 1 1 dedermanni 1 1 1 pachycers 1 1 1 diderrichi 1 1 1	23 34 45 ndicator of the lik is better. Subspecies	56 67 elihood th 854 832 828 826 826 824 824	78 89 at a given n 99.42 99.42 99.42 98.59 9 97.8 9 97.8 9 97.69 9	E-Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	erated Stati Priv Publi: Ear Rele Publi: Ear Rele Priv Publi:
94 92 1 1 Scores Higher Rank 1 2 3 4 5 6 7 8	12 23 indicate the degis better. 99 Match Phylum Magnoliophyta Magnoliophyta Magnoliophyta Magnoliophyta Magnoliophyta Magnoliophyta	34 45 56 gree of similarity Class Magnoliopsida Magnoliopsida Magnoliopsida Magnoliopsida Magnoliopsida Magnoliopsida Magnoliopsida	67 78 89 between the q Gentianales Gentianales Gentianales Gentianales Gentianales Gentianales Gentianales	Family Rubiaceae	d hits. Genus Mitragyna Mitragyna Hallea Cephalanthus Corynanthe Nauclea Nauclea	Looo 1 12 E-Values are an i randomly. Lower Species Species Coccidentalis pachyceras diderrichii diderrichii	23 34 45 ndicator of the lik is better. Subspecies	56 67 elihood th 854 832 828 828 826 826 824 824 822	78 89 at a given n 99.42 99.42 98.59 97.8 97.8 97.69 97.69 97.69 97.57	E-Value	erated Statu Prive Publis Ear Rele Publis Ear Rele Prive Prive Prive Prive
94 92 1 Scores Higher Rank 1 2 3 3 4 5 6 7 8 8 9	12 23 indicate the desis better. 99 Match Phylum Magnoliophyta Magnoliophyta Magnoliophyta Magnoliophyta Magnoliophyta Magnoliophyta Magnoliophyta	34 45 56 gree of similarity Class Magnoliopsida Magnoliopsida Magnoliopsida Magnoliopsida Magnoliopsida Magnoliopsida Magnoliopsida Magnoliopsida	67 78 89 between the q Gentianales Gentianales Gentianales Gentianales Gentianales Gentianales Gentianales Gentianales	Family Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae	d hits. Genus Mitragyna Mitrag	0.0 1 12 1 12 12 F-Values are an indomly. Lower 1 12 Species 1 12 Species 1 12 species 1 12 idermanni 1 12 idermanni 1 12 idierrichi 1 12 idierrichi 1 12 idierrichi 1 12	23 34 45 ndicator of the lik is better. Subspecies	56 67 elihood th 854 832 828 826 826 824 824 824 824 824 824 824 824 824 824	78 89 at a given n 99.42 99.42 99.42 98.59 97.8 97.69 97.69 97.69 97.69 97.69 97.69 97.69 96.88	E-Value 0 0	erated Stati Priv Publis Ear Rele Publis Ear Rele Priv Priv Priv Publis

Figure S5. Graphical overview of the BLAST results (January 2020) in BOLD database using *matK* (core locus of The Consortium for the Barcode of Life; CBOL). Sample K52 shows \geq 99% similarity with *Mitragyna speciosa*. Only the top 10 results are shown.

Figure S6. Phylogenetic tree (RAxML; -lnL = 1252.61) inferred from the DNA sequence data from the Internal Transcribed Spacer region (ITS; 662 bp). K49 and K52 form a strongly supported clade with published sequence data of *Mitragyna speciosa* with \ge 99% bootstrap support. Numbers refer to RAxML bootstrap support values \ge 70% based on 1000 replicates. Clades with samples from the present study are highlighted in gray. Bar indicates nucleotide substitutions per site. The tree was rooted to *Nauclea officinalis*. Sample vials of K49 and K52 materials are shown on the left.

Table S1. Uncorrected p-Distances from the *trnH-psbA* Region Indicating that Kratom Samples Barcoded in Our Study Have Higher Sequence Similarity with *Mitragyna speciosa*. Regions with N at the beginning and end of the nucleotide alignment were not taken into consideration for uncorrected p-distances. Comparisons were made using the listed species. *Mitragyna speciosa* MH069946; *Mitragyna speciosa* LC334417; *Mitragyna diversifolia* LC334418; *Mitragyna rotundifolia* LC334419; and *Mitragyna hirsuta* LC334420.

	K49	K52	Mitragyna	Mitragyna	Mitragyna	Mitragyna	Mitragyna
K49		100%	100%	100%	95%	95%	95%
K52	100%	$>\!$	100%	100%	95%	95%	95%
Mitragyna_speciosaM	100%	100%	>	100%	95%	95%	95%
Mitragyna_speciosa_L	100%	100%	100%	$>\!$	95%	95%	95%
Mitragyna_diversifolia	95%	95%	95%	95%	$>\!\!\!<$	100%	100%
Mitragyna_rotundifolia	95%	95%	95%	95%	100%	>	100%
Mitragyna_hirsuta_LC3	95%	95%	95%	95%	100%	100%	

Table S2. Uncorrected p-Distances from the ITS Region Indicating that Kratom Samples Barcoded in Our Study Have Higher Sequence Similarity with *Mitragyna speciosa*. Regions with N at the beginning and end of the nucleotide alignment were not taken into consideration for uncorrected p-distances. Comparisons were made using the listed species. *Mitragyna speciosa* JF412826; *Mitragyna speciosa* JF412827; *Mitragyna speciosa* KC737618; *Mitragyna speciosa* AB249645; *Mitragyna diversifolia* AB249646; *Mitragyna hirsuta* AB249647; *Mitragyna rotundifolia* AB249648; and *Nauclea officinalis* MG730972.

	K49_1_ITS	K49_2_ITS	K52_1_ITS	K52_2_ITS	JF412826	JF412827	KC73761	AB24964	AB24964	AB24964	AB24964	MG73097
K49_1_ITS	$>\!\!\!<$	100%	100%	100%	100%	100%	100%	100%	98%	98%	97%	92%
K49_2_ITS	100%	$>\!$	100%	100%	100%	100%	100%	100%	98%	98%	96%	92%
K52_1_ITS	100%	100%	$>\!\!\!<$	100%	100%	100%	100%	100%	98%	98%	97%	92%
K52_2_ITS	100%	100%	100%	$>\!$	100%	100%	100%	100%	98%	98%	97%	92%
JF412826_Mitragyna	100%	100%	100%	100%	$>\!$	100%	100%	100%	98%	98%	97%	92%
JF412827_Mitragyna	100%	100%	100%	100%	100%	$>\!$	100%	100%	98%	98%	97%	92%
KC737618_Mitragyna	100%	100%	100%	100%	100%	100%	$>\!$	100%	98%	98%	97%	91%
AB249645_Mitragyna	100%	100%	100%	100%	100%	100%	100%	$>\!$	98%	98%	97%	91%
AB249646_Mitragyna	98%	98%	98%	98%	98%	98%	98%	98%	$>\!$	100%	98%	89%
AB249647_Mitragyna	98%	98%	98%	98%	98%	98%	98%	98%	100%	>	98%	89%
AB249648_Mitragyna	97%	96%	97%	97%	97%	97%	97%	97%	98%	98%	$>\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	89%
MG730972_Nauclea	92%	92%	92%	92%	92%	92%	91%	91%	89%	89%	89%	$>\!\!\!<$

Table S3. Primers and PCR	Protocols for Plant Identification.
----------------------------------	-------------------------------------

Locus	Primer	Primer Sequence 5'-3'	Direction	PCR protocol*
The chloroplast	matK-xf	TAATTTACGATCAATTCATTC	Forward	1. 98°C – 45 sec
maturase K gene				2. $98^{\circ}C - 10$ sec
(matK)	matK-MALP	ACAAGAAAGTCGAAGTAT	Reverse	3. $54^{\circ}C - 30$ sec
				4. $72^{\circ}C - 40$ sec
				5. Repeat 2–4 for 35 cycles
				6. 72°C – 10 min
				7. 4°C on hold
The chloroplast	psbA	GTTATGCATGAACGTAATGCTC	Forward	1. 94°C – 5 min
intergenic region	-			2. 94°C – 1 min
(trnH-psbA)	trnH	CGCGCATGGTGGATTCACAATCC	Reverse	3. 50°C − 1 min
				4. 72°C − 2 min
				5. Repeat 2–4 for 35 cycles
				6. $72^{\circ}C - 7 \min$
				7. 4°C on hold
The internal	ITS-u1	GGAAGKARAAGTCGTAACAAGG	Forward	1. 94°C – 4 min
transcribed spacer				2. $94^{\circ}C - 30$ sec
(ITS) of nuclear	ITS-u4	RGTTTCTTTTCCTCCGCTTA	Reverse	3. 55°C or 58°C – 40 sec
ribosomal DNA				4. 72°C − 1 min
				5. Repeat 2–4 for 34 cycles
				6. 72°C – 10 min
				7. 4°C on hold

Figure S7. Chromatographic profiles of the two sources of kratom, specifically A) Green Maeng Da (K49) and B) White Jongkong (K52). The major compound present in K49 is mitragynine (1, yellow peak). However, in K52 speciofoline (12, black peak) has a much higher abundance. The chromatograms were acquired in the reverse phase using a UPLC system coupled with HRESIMS.

Figure S8. Workflow for the isolation of the alkaloids from the kratom product termed Green Maeng Da (i.e., sample K49).

Figure S9. Workflow for the isolation of the alkaloids from the kratom product termed White Jongkong (i.e., sample K52).

Figure S10. UPLC-HRESIMS data for mitragynine (1).

Figure S11. UPLC-HRESIMS data for speciociliatine (2).

Figure S12. UPLC-HRESIMS data for speciogynine (3).

Figure S13. UPLC-HRESIMS data for mitraciliatine (4).

Figure S14. ¹H and ¹³C NMR spectra for mitragynine (1) (CDCl₃, 400 MHz and 100 MHz, respectively).

Figure S15. ¹H and ¹³C NMR spectra for speciociliatine (2) (CDCl₃, 400 MHz and 100 MHz, respectively).

Figure S16. ¹H and ¹³C NMR spectra for speciogynine (3) (CDCl₃, 400 MHz and 100 MHz, respectively).

Figure S17. ¹H and ¹³C NMR spectra for mitraciliatine (4) (CDCl₃, 400 MHz and 100 MHz, respectively).

			mitragynine (1)		speciociliatine (2) speciogynine (3)					mitraciliatine (4)		
position	$\delta_{\rm C}$	type	$\delta_{\rm H}$ (J in Hz)	$\delta_{\rm C}$	type	$\delta_{\rm H} (J \text{ in Hz})$	$\delta_{\rm C}$	type	$\delta_{\rm H} (J \text{ in Hz})$	$\delta_{\rm C}$	type	$\delta_{\rm H} (J \text{ in Hz})$
2	133.5	С		130.1	С		131.6	С		128.8	С	
3	61.3	CH	3.20, d (8.4)	54.7	CH	4.40, bs	61.9	CH	3.21, m	53.9	CH	4.80, s
5	53.8	CH_2	2.97, m	52.1	CH_2	3.23, m	52.4ª	CH_2	3.20, m	50.6	CH_2	3.32, m
			2.55, m			3.04, m			2.68, m			
6	23.9	CH_2	3.11, m	20.4	CH_2	3.31, m	22.0	CH_2	3.19, m	18.6	CH_2	3.20, m
			2.97, m			2.89, m			3.06, m			3.02, m
7	108.0	С		107.7	С		107.5 ^a	С		106.9	С	
8	117.7	С		117.5	С		117.3	С		117.6	С	
9	154.6	С		154.4	С		154.6	С		154.4	С	
10	99.9	CH	6.45, d (7.7)	99.8	CH	6.47, d (7.7)	99.8	CH	6.44, d (7.8)	99.7	CH	6.49, d (7.6)
11	122.0	CH	7.00, t (7.9)	122.4	CH	7.02, t (8.0)	122.4	CH	6.99, t (7.9)	122.6	CH	7.07, t (7.9)
12	104.3	CH	6.90, d (8.1)	104.5	CH	6.91, d (8.1)	104.5	CH	6.87, d (8.0)	104.9	CH	7.01, d (8.0)
13	137.4	С		137.4	С		137.7	С		137.7	С	
14	30.0	CH_2	2.55, m	29.8	CH_2	2.50, m	32.9	CH_2	2.17, m	30.8	CH_2	2.60, t (11.5)
			1.81, m			2.02, m			1.95, m			2.10, bd (11.4)
15	39.9	CH	3.06, m	33.0	CH	2.97, m	39.4	CH	2.63, m	34.1	CH	2.28, m
16	111.5	С		110.8	С		111.3	С		111.0	С	
17	160.7	CH	7.43, s	160.6	CH	7.44, s	160.4	CH	7.35, bs	160.2	CH	7.32, s
18	13.0	CH_3	0.87, t (7.3)	12.5	CH_3	0.89, t (7.9)	11.1	CH_3	0.85, t (7.2)	11.1	CH_3	0.74, t (7.0)
19	19.3	CH_2	1.75, m	20.1	CH_2	1.64, m	24.3	CH_2	1.40, m	24.3	CH_2	1.32, m
			1.19, qd (7.4, 2.7)			1.25, m			1.04, m			0.84, m
20	40.7	CH	1.64, dt (11.5, 2.6)	39.0	CH	1.83, m	37.5	CH	2.31, m	37.5	CH	2.40, m
21	57.7	CH_2	3.00, m	50.5	CH_2	3.27, m	59.7	CH_2	3.26, m	49.7	CH_2	3.05, m
			2.44, m			2.89, m			2.21, m			2.57, m
22	169.4	С		169.3	С		170.2 ^a	С		168.9	С	
9-OCH ₃	55.5	CH_3	3.87, s	55.3	CH_3	3.88, s	55.4	CH ₃	3.85, s	55.3	CH_3	3.89, s
17-OCH ₃	61.7	CH ₃	3.73, s	61.7	CH ₃	3.78, s	61.9	CH ₃	3.72, s	61.8	CH_3	3.77, s
22-OCH ₃	51.5	CH_3	3.71, s	51.6	CH_3	3.66, s	51.1	CH_3	3.72, s	51.5	CH_3	3.68, s
NH			7.74, bs			8.00, bs			7.94, bs			8.98, bs
^a Signals ob	served b	y 2D exp	eriments									

Table S4. Comparison of NMR Data for Compounds 1-4 (CDCl₃, 100 MHz and 400 MHz).

Figure S18. Representation for the different orientations of H-3 with respect to the nitrogen non-bonding electron pair for the most stable conformation of mitragynine (1) and speciociliatine (2).

Figure S19. Comparison of the ECD spectra acquired in CH₃OH for A) mitragynine (1), B) speciociliatine (2), C) speciogynine (3), and D) mitraciliatine (4).

Figure S20. UPLC-HRESIMS data for paynantheine (5).

Figure S21. UPLC-HRESIMS data for isopaynantheine (6).

Figure S22. UPLC-HRESIMS data for epiallo-isopaynantheine (7).

Figure S23. ¹H and ¹³C NMR spectra for paynantheine (5) (CDCl₃, 400 MHz and 100 MHz, respectively).

Figure S24. ¹H and ¹³C NMR spectra for isopaynantheine (6) (CDCl₃, 400 MHz and 100 MHz, respectively).

Figure S25. ¹H and ¹³C NMR spectra for epiallo-isopaynantheine (7) (CDCl₃, 400 MHz and 100 MHz, respectively).

Figure S26. COSY spectrum for epiallo-isopaynantheine (7) (CDCl₃, 400 MHz).

Figure S27. HSQC spectrum for epiallo-isopaynantheine (7) (CDCl₃, 400 MHz).

Figure S28. HMBC spectrum for epiallo-isopaynantheine (7) (CDCl₃, 400 MHz).

Figure S29. NOESY spectrum for isopaynantheine (6) (CDCl₃, 400 MHz).

Figure S30. NOESY spectrum for epiallo-isopaynantheine (7) (CDCl₃, 400 MHz).

NOESY correlations

Compound	Distances (Å)			
Compound	$\mathrm{H_{15}}{\rightarrow}\mathrm{H_{18}}$	$\mathrm{H_{15}}{\rightarrow}\mathrm{H_{19}}$		
Isopaynantheine (6)	2.6	4.6		
Epiallo-isopaynantheine (7)	3.6	2.8		

Figure S31. Observed NOESY correlations for compounds 6 and 7, and the distances for the key positions in the diastereoisomers.

7a ($\varDelta G 0.000$ kcal/mol; P = 23.33%)

7b ($\varDelta G 0.003$ kcal/mol; P = 23.23%)

7c ($\Delta G 0.366$ kcal/mol; P = 12.56%)

7d ($\Delta G 0.336$ kcal/mol; P = 12.56%)

7e ($\Delta G 0.470$ kcal/mol; P = 10.53%)

7f (ΔG 0.470 kcal/mol; P = 10.53%)

 $7g (\Delta G 1.293 \text{ kcal/mol}; P = 2.63\%)$

7h (ΔG 1.364 kcal/mol; P = 2.33%)

7i ($\Delta G 1.373$ kcal/mol; P = 2.29%)

Figure S32. Nine conformers for the prediction of the ECD spectrum for **7**. The Boltzmann distributions are expressed as a percentage of population (P); the number of excited states considered for the calculation was n = 30.

	paynantheine (5)			isopaynantheine (6)		epiallo-isopaynantheine (7)			
Position	$\delta_{\rm C}$	type	$\delta_{\rm H} (J \text{ in Hz})$	$\delta_{\rm C}$	type	$\delta_{\rm H} (J \text{ in Hz})$	$\delta_{\rm C}$	type	$\delta_{\rm H} (J \text{ in Hz})$
2	132.9	С		128.2	С		127.1	С	
3	60.1	CH	3.20, m	53.8	CH	4.73, bs	53.9	CH	4.85, bs
5	53.2	CH_2	3.47, m	50.4	CH_2	3.29, m	50.0	CH_2	3.32, m
			2.67, m						
6	23.8	CH_2	3.18, m	18.5	CH_2	3.18, m	18.2	CH_2	3.10, m
			2.80, m			3.00, m			3.02, m
7	107.9	С		106.7	С		106.2	С	
8	117.6	С		117.4	С		117.2	С	
9	154.6	С		154.4	С		154.4	С	
10	99.9	CH	6.45, d (7.8)	99.7	CH	6.49, d (7.6)	99.7	CH	6.49, d (7.8)
11	122.1	CH	7.00, t (7.9)	122.6	CH	7.07, t (7.9)	122.9	CH	7.08, t (7.9)
12	104.3	CH	6.88, d (8.0)	105.0	CH	7.02, d (8.1)	105.0	CH	7.01, d (8.1)
13	137.4	CH		137.8	CH		138.1	CH	
14	33.5	CH_2	2.16, dd (12.5, 12.00)	30.0	CH_2	2.61, t (14.0)	29.6	CH_2	2.65, m
			1.96, d (13.2)			2.11, d (14.3)			2.16, d (14.5)
15	38.7	CH	2.78, td (11.8, 3.7)	33.1	CH	2.40, td (12.8, 3.1)	32.8	CH	2.44, td (12.1, 3.0)
16	111.6	С		110.7	С		110.3	С	
17	160.0	CH	7.33, s	160.2	CH	7.28, s	160.3	CH	7.28, s
18	115.7	CH_2	5.01, dd (17.3, 2.0)	116.7	CH_2	4.96, dd (17.2, 1.8)	117.2	CH_2	4.98, dd (17.3, 1.7)
			4.96, dd (10.4, 2.1)			4.89, dd (10.2, 1.8)			4.91, dd (10.3, 1.8)
19	139.4	CH	5.55, dt (17.9, 9.3)	137.9	CH	5.29, ddd (18.0, 10.3, 8.3)	137.1	CH	5.27, ddd (18.0, 10.3, 8.3)
20	42.9	CH	3.08. m	41.2	СН	3.13. m	40.6	СН	3.19. m
21	61.3	CH ₂	3.03. m	49.7	CH ₂	2.86. dd (11.6. 3.9)	49.3	CH ₂	2.97. dd (11.7. 3.8)
		- 2	2.37. m		- 2	2.74. t (11.6)		- 2	2.78. t (11.8)
22	168.9	С		168.6	С		168.2	С	,.()
9-OCH ₃	55.4	CH ₃	3.86, s	55.3	CH_3	3.89, s	55.3	CH_3	3.88, s
17-OCH ₃	61.7	CH_3	3.78, s	61.7	CH_3	3.76, s	61.7	CH ₃	3.76, s
22-OCH ₃	51.5	CH_3	3.69, s	51.4	CH_3	3.67, s	51.5	CH_3	3.67, s
NH			7.85, s			8.91, s			9.12, s

Table S5. Comparison of NMR Data for Compounds 5-7 (CDCl₃, 100 MHz and 400 MHz)

Figure S33. Comparison of the ECD spectra acquired in CH₃OH for A) paynantheine (5), B) isopaynantheine (6), and C) epiallo-isopaynantheine (7).

Figure S34. NP-HPLC chromatograms for compounds **5**, **6**, and **7**. These data were acquired using a Luna Silica column (Phenomenex, 250 x 4.6 mm) via isocratic conditions using a mixture of CHCl₃-MeOH (95:5) with a flow rate of 1 mL/min and UV set at 250 nm.

Figure S35. UPLC-HRESIMS data for mitragynine-*N*(4)-oxide (8).

Figure S36. UPLC-HRESIMS data for speciociliatine-*N*(4)-oxide (9).

Figure S37. UPLC-HRESIMS data for isopaynantheine-*N*(4)-oxide (10).

Figure S38. UPLC-HRESIMS data for epiallo-isopaynantheine-N(4)-oxide (11)

Figure S39. ¹H and ¹³C NMR spectra for mitragynine-*N*(4)-oxide (8) (CDCl₃, 400 MHz and 100 MHz, respectively).

Figure S40. ¹H and ¹³C NMR spectra for speciociliatine-*N*(4)-oxide (9) (CDCl₃, 400 MHz and 100 MHz, respectively).

Figure S41. ¹H and ¹³C NMR spectra for isopaynantheine-*N*(4)-oxide (10) (CDCl₃, 400 MHz and 100 MHz, respectively).

Figure S42. ¹H and ¹³C NMR spectra for epiallo-isopaynantheine-*N*(4)-oxide (11) (CDCl₃, 400 MHz and 100 MHz, respectively).

Figure S44. HSQC spectrum for epiallo-isopaynantheine-*N*(4)-oxide (11) (CDCl₃, 400 MHz).

Figure S45. HMBC spectrum for epiallo-isopaynantheine-*N*(4)-oxide (11) (CDCl₃, 400 MHz).

Figure S46. A) Comparison of the ECD spectra for *N*-oxides (10 and 11), and indole alkaloids (6 and 7); B) Comparison of the ¹H NMR of 7, and that of 11 after incubation with sulfuric acid.

	mitragynine-N(4)-oxide (8)			speciociliatine- <i>N</i> (4)-oxide (9)			isopaynantheine-N(4)-oxide (10)			epiallo-isopaynantheine- <i>N</i> (4)-oxide (11)		
position	δ_{C}	type	$\delta_{\rm H} (J \text{ in Hz})$	δ_{C}	type	$\delta_{\rm H} (J \text{ in Hz})$	δ_{C}	type	$\delta_{\rm H} (J \text{ in Hz})$	δ_{C}	type	$\delta_{\rm H} (J \text{ in Hz})$
2	127.6	С		127.0	С		127.1	С		127.5	С	
3	66.9	CH	5.16, s	66.0	CH	5.04, d (12.5)	69.2	CH	5.04, bs	69.6	CH	4.91, bs
5	65.9	CH_2	3.88, m	65.8	CH_2	3.98, m	67.1	CH_2	3.81,m	67.7	CH_2	3.94, m
						3.51, td (11.7, 4.7)						3.83, m
6	21.7	CH_2	3.18, m	20.1	CH_2	3.15, dd (16.7, 4.5)	21.7	CH_2	3.25, m	21.8	CH_2	3.20, m
7	109.2	С		107.4	С		106.1	С		106.1	С	
8	116.6	С		117.2	С		116.9	С		116.9	С	
9	154.2	С		154.6	С		154.4	С		154.4	С	
10	99.7	CH	6.43, d (7.7)	99.8	CH	6.43, d (7.7)	99.9	CH	6.49, d (7.8)	99.8	CH	6.48 d (7.7
11	123.3	CH	7.03, t (7.9)	122.7	CH	6.99, t (7.9)	123.8	CH	7.11, t (7.9)	123.6	CH	7.10, t (7.9)
12	105.2	CH	6.95, d (8.1)	106.3	CH	6.92, bs	105.1	CH	7.03, d (8.2)	105.2	CH	7.04, d (8.1)
13	138.6	С	-	137.9	С	-	138.7	С	-	138.8	С	
14	29.0	CH_2	2.23, d (15.0)	29.5	CH_2	1.25, m	26.8	CH_2	2.08, m	26.8	CH_2	2.10, d (13.8)
15	29.9	CH_2	2.82, bs	29.8	CH_2	1.88, d (14.7)	24.5	CH_2	2.43, t (12.3)	23.1	CH_2	2.42 t (11.4)
16	111.4	С	-	111.4	С	-	110.9	С	-	109.1ª	С	
17	161.5	CH	7.45, s	161.3	CH	7.46, s	160.5	CH	7.31, s	160.5	CH	7.30, s
18	12.7	CH_3	0.93, t (7.2)	11.8	CH_3	0.85, t (7.4)	118.0	CH_2	5.02, dd (17.5, 1.0)	117.8	CH_2	5.02, d (17.2)
									4.95, dd (10.2, 1.7)			4.94, dd (10.3, 1.6)
19	23.5	CH_2	1.31, m	23.3	CH_2	1.14, m	136.2	СН	5.25, dt (17.5, 9.3)	136.5	СН	5.26, dt (17.5, 8.6)
			1.28, m									
20	38.7	CH	1.76, bs	33.4	CH	2.72, bs	37.2	CH	3.85, m	37.3	CH	3.81, m
21	68.5	CH_2	3.53, m	68.6	CH_2	3.72, m	61.7	CH_2	3.25, m	62.1	CH_2	3.25, t (11.7)
									3.10. m			3.17. m
22	168.7	С		169.7	С		168.8	С	7	168.7	С	
9-OCH ₃	55.2	CH_3	3.85, s	55.3	CH_3	3.86, s	55.3	CH_3	3.88, s	55.3	CH ₃	3.87, s
17-OCH ₃	62.1	CH ₃	3.80, s	61.9	CH_3	3.85, s	62.0	CH_3	3.80, s	62.0	CH ₃	3.79, s
22-OCH ₃	51.6	CH ₃	3.61, s	51.8	CH ₃	3.68, s	51.6	CH_3	3.68, s	51.6	CH ₃	3.68, s
NH			9.46, s			-			8.84, s			-
^a Signal obser	ved by HM	/IBC										

Table S6. Comparison of NMR Data for Compounds 8-11 (CDCl₃, 100 MHz and 400 MHz)

Figure S47. Comparison of the ECD spectra acquired in CH₃OH for A) mitragynine-N(4)-oxide (8), B) speciociliatine-N(4)-oxide (9), C) isopaynantheine-N(4)-oxide (10), and D) epiallo-isopaynantheine-N(4)-oxide (11).

Figure S48. UPLC-HRESIMS data for speciofoline (12).

Figure S49. UPLC-HRESIMS data for isorotundifoleine (13).

Figure S50. UPLC-HRESIMS data for isospeciofoleine (14).

Figure S51. ¹H and ¹³C NMR spectra for speciofoline (12) (CDCl₃, 400 MHz and 100 MHz, respectively).

Figure S52. ¹H and ¹³C NMR spectra for isorotundifoleine (13) (CDCl₃, 500 MHz and 125 MHz, respectively).

Figure S53. ¹H and ¹³C NMR spectra for isospeciofoleine (14) (CDCl₃, 500 MHz and 125 MHz, respectively).

		iofoline (12)		isorotundifoleine (13)				isospeciofoleine (14)			
Position	δ_{C}	type	$\delta_{\rm H} (J \text{ in Hz})$	δ_{C}	type	$\delta_{\rm H} (J \text{ in Hz})$	$\delta_{\rm C}$	type	$\delta_{\rm H} (J \text{ in Hz})$		
2	180.2	С		177.7	С		179.1	С			
3	63.8	CH	3.06, dd (11.7, 3.6)	66.6	CH	3.39, dd (12.5, 3.6)	68.7	CH	2.68, dd (11.6, 3.2)		
5	53.1	CH_2	3.43, td (9.2, 3.2)	46.6	CH_2	3.48, m	53.1	CH_2	3.42, td (9.2, 3.1)		
			2.67, m			3.24, td (9.4, 4.1)			2.60, m		
6	33.9	CH_2	2.40, ddd (13.8, 10.9, 3.3)	34.4	CH_2	2.61, m	34.2	CH_2	2.42, ddd (13.7, 10.7, 3.1)		
			2.14, m			2.27, ddd (13.5, 9.3, 6.6)			2.18, m		
7	57.3	С		55.9	С		57.5	С			
8	116.7	С		119.9	С		116.7	С			
9	154.6	С		155.1	С		154.6	С			
10	111.9	CH	6.35, d (7.6)	112.1	CH	6.30, dd (7.6, 0.8)	111.4	CH	6.36, dd (7.6, 0.7)		
11	129.6	CH	7.05, t (8.0)	129.2	CH	7.02, dd (8.3, 7.7)	129.6	CH	7.06, dd (8.3, 7.7)		
12	101.1	CH	6.53, d (8.3)	100.3	CH	6.52, dd (8.5, 0.8)	101.0	CH	6.58, d (8.3)		
13	140.7	С		139.8	С		140.5	С			
14	31.6	CH_2	1.49, ddd (13.7, 12.1, 6.5)	24.8	CH_2	2.38, m	29.8	CH_2	1.68, d (13.4)		
			1.40, m			1.48, d (14.0)			1.37, d (11.8)		
15	31.1	CH	3.27, t (5.7)	43.6	CH	2.61, m	38.0	CH	2.60, m		
16	111.0	С		111.8	С		111.8	С			
17	159.8	CH	7.38, s	159.8	CH	7.27, s	159.9	CH	7.19, s		
18	12.3	CH_3	0.83, d (7.4)	116.4	CH_2	5.01, m	116.4	CH_2	4.97, m		
						4.96, m			4.95, m		
19	24.2	CH_2	1.21, dqd (14.0, 6.8, 2.8)	138.8	CH	5.43, dt (18.7, 9.1)	138.6	CH	5.49, dt (17.3, 9.5)		
20	38.0	СН	1.00 dn (12.3, 7.1)	35.1	СН	3.16 m	42.0	СН	2.90 m		
20	53.6	CH	3.06 dd (11.7, 3.6)	51.6	CH	3.10, III	42.0 57.0	CH	2.50, III		
21	55.0		$2.80 \pm (11.7)$	51.0		$2.95 \pm 1.(12.9, 12.2)$	57.0		$2.12 \pm (11.2, 3.9)$		
22	160.6	C	2.89, t (11.6)	160 1	C	2.85, dd (13.8, 12.2)	160 5	C	2.12, t (11.5)		
17 OCH-	109.0 61.3	CH.	370 s	100.1 61.7	CH.	3 70 s	109.3 61.5	CH.	3.71 s		
$17 - 0 CH_3$	517		3.17, 8 3.65 s	51.7		3.17, 5	51.2		3.71, 5 3.50 s		
22-0C113 NH	51.7	C113	5.05, 8 8 // s	51.5	CH3	5.00, s 7 / 5 s	51.2	CH3	5.57, 8 7.60 s		
1111			0.44, 5			7.43,8			7.00, 8		

Table S7. Comparison of NMR Data for Compounds 12-14 (CDCl₃, 125 MHz and 500 MHz)

Figure S54. Comparison of the ECD spectra acquired in CH₃OH for A) speciofoline (12), B) isorotundifoleine (13), and C) isospeciofoleine (14).

Figure S55. UPLC-HRESIMS data for corynoxine A (15).

Figure S56. UPLC-HRESIMS data for corynoxine B (16).

Figure S57. UPLC-HRESIMS data for 3-epirhynchophylline (17).

Figure S58. UPLC-HRESIMS data for 3-epicorynoxine B (18).

Figure S59. UPLC-HRESIMS data for corynoxeine (19)

Figure S61. ¹H and ¹³C NMR spectra for corynoxine B (16) (CDCl₃, 500 MHz and 125 MHz, respectively).

Intramolecular Mannich reaction

Figure S62. Monitoring the epimerization of corynoxine B (16) to corynoxine A (15) by ¹H NMR (CDCl₃, 500 MHz), and the proposed mechanism of epimerization via an intramolecular Mannich reaction.

Figure S64. COSY spectrum for 3-epirhynchophylline (17) (CDCl₃, 500 MHz).

Figure S65. HSQC spectrum for 3-epirhynchophylline (17) (CDCl₃, 500 MHz).

Figure S66. HMBC spectrum for 3-epirhynchophylline (17) (CDCl₃, 500 MHz).

Figure S67. NOESY spectrum for 3-epirhynchophylline (17) (CDCl₃, 500 MHz).

17a (ΔG 0.000 kcal/mol; P = 25.16%)

17b ($\Delta G 0.131$ kcal/mol; P = 20.14%)

17c ($\Delta G 0.132$ kcal/mol; P = 20.12%)

17d (ΔG 0.553 kcal/mol; P = 9.88%)

17e (ΔG 0.556 kcal/mol; P = 9.84%)

 $17f (\Delta G 0.557 \text{ kcal/mol}; P = 9.82\%)$

Figure S68. Six conformers used for the prediction of the ECD spectrum for **17**. The Boltzmann distributions are expressed as a percentage of population (*P*); the number of excited states considered for the calculation was n = 30.

Figure S69. ¹H and ¹³C NMR spectra for 3-epicorynoxine B (18) (CDCl₃, 500 MHz and 125 MHz, respectively).

Figure S70. COSY spectrum for 3-epicorynoxine B (18) (CDCl₃, 500 MHz).

Figure S71. HSQC spectrum for 3-epicorynoxine B (18) (CDCl₃, 500 MHz).

Figure S72. HMBC spectrum for 3-epicorynoxine B (18) (CDCl₃, 500 MHz).

Figure S73. NOESY spectrum for 3-epicorynoxine B (18) (CDCl₃, 500 MHz).

18a (ΔG 0.000 kcal/mol; P = 65.03%)

18b (⊿G 0.367 kcal/mol; P = 34.97%)

Figure S74. Two conformers used for the prediction of the ECD spectrum for **18**. The Boltzmann distributions are expressed as a percentage of population (*P*); the number of excited states considered for the calculation was n = 30.

Figure S75. ¹H and ¹³C NMR spectra for corynoxeine (19) (CDCl₃, 500 MHz and 125 MHz, respectively).

		coryno	xine A (15)		coryno	oxine B (16)	3	-epirhyn	chophylline (17)	3	-epicory	vnoxine B (18)		coryn	oxeine (19)
position	$\delta_{\rm C}$	type	$\delta_{\rm H} (J \text{ in Hz})$	δ_{C}	type	$\delta_{\rm H} (J \text{ in Hz})$	$\delta_{\rm C}$	type	$\delta_{\rm H} (J \text{ in Hz})$	δ_{C}	type	$\delta_{\rm H} \left(J \text{ in Hz} \right)$	$\delta_{\rm C}$	type	$\delta_{\rm H} \left(J \text{ in Hz} \right)$
2	182.4	С		182.3	С		181.2	С		182.2	С		181.0	С	
3	73.2	CH	2.41, dd	76.5	СН	2.24, bd	77.4	СН	2.19, dd	77.0	CH	2.19, d	75.2	СН	2.30, dd
5	54.0	CH ₂	3.23. dd	54.9	CH ₂	3.33. m	55.1	CH ₂	3.33. d	54.8	CH ₂	3.32. t	55.0	CH ₂	3.39, t (8.3)
		_	(8.7, 2.2)		-	2.50, m		-	(8.5)		-	(8.0)		-	2.47, m
			3.20, dd						2.40, m			2.39, m			
			(11.0, 2.16)												
6	34.9	CH_2	2.46, q (8.7)	34.1	CH_2	2.46, m	34.2	CH_2	2.49, ddd	34.2	CH_2	2.49, m	34.9	CH_2	2.52, m
			2.03, dt			2.03, m			(12.8, 10.0, 8.1)			2.01. dd			2.04. ddd
			(12.9, 8.5)						(12, 0, 7, 0, 1, 3)			(12.9, 8.3)			(13.6, 7.2, 1.8)
7	57.5	С		56.6	С		56.4	С	(12.9, 7.9, 1.5)	56.7	С		58.9	С	
8	134.7	С		133.7	С		133.8	С		135.6	С		133.8	С	
9	125.0	CH	7.45, d (7.4)	123.2	CH	7.19, d (7.4)	123.3	CH	7.20, d (7.5)	123.4	CH	7.20, d (7.8)	123.5	CH	7.22, d (7.8)
10	122.5	CH	7.05, td (7.6, 1.0)	122.5	CH	7.01, td (7.5, 1.0)	122.5	CH	7.02, td (7.6, 1.0)	122.9	CH	7.02, td (7.5)	122.7	CH	7.05, td (7.6, 1.0)
11	127.4	СН	7.17, td (7.7, 1.3)	127.9	CH	7.16, td (7.7, 1.0)	127.8	CH	7.16, td (7.7, 1.2)	128.1	CH	7.17, t (7.7)	128.0	СН	7.18, td (7.7, 1.2)
12	109.5	СН	6.86, d (7.7)	109.5	CH	6.87, d (7.7)	109.1	CH	6.81, d (7.7)	109.6	CH	6.80, d (7.7)	109.2	СН	6.82, d (7.7)
13	140.0	С		141.2	С		140.9	С		140.9	С		140.8	С	
			2.36, ddd			2.37, td			2.31, m			2.30, m			2.47, m
14	25.4	CH_2	(12.8, 9.4, 2.3)	25.0	CH_2	(12.5, 12.1)	25.0	CH_2	1.06, dt (12.4, 2.6)	24.8	CH_2	1.06, d (12.0)	28.9	CH_2	1.89 t (10.9)
			0.92, dt (13.2, 3.0)			1.04, dt (12.3, 2.8)									
15	38.9	CH	2.76, dt (13.3, 3.6)	39.9	CH	2.64, dt (12.9, 3.4)	40.2	CH	2.64, dt (12.9, 3.4)	39.0	CH	2.64, qt (12.8, 2.9)	38.4	CH	3.01, qd (11.5, 3.8)
16	111.8	С	-	111.4	С	-	111.5	С	-	111.3	С	-	111.0	С	
17	160.3	CH	7.23, s	160.6	CH	7.29, s	160.6	CH	7.31, s	160.6	CH	7.32, s	159.9	CH	7.24, s
18	13.0	CH_3	0.87, t (7.4)	13.4	CH_3	0.86, t (7.4)	13.5	CH_3	0.86, t (7.4)	13.3	CH_3	0.86, t (7.3)	115.6	CH_2	4.95, ddd
															(17.2, 2.01, 0.8)
															4.90, dd (10.2, 2, 1)
19	19.4	CH_2	1.10, dqd	19.3	CH_2	1.77, ddq	19.3	CH_2	1.78, ddq	19.8	CH_2	1.80, m	139.6	CH_2	5.51, dt
			(15.7, 7.8, 2.9)			(14.2, 11.1, 7.1)			(13.6, 11.2, 7.2)						(18.0, 9.1)
			1.65, dq			1.18, m			1.18, dq			1.17, dq			
20	40.2	CI I	(14.3, 7.2)	10.2	GU	1.50 1.(11.0)	10.5	CII	(14.7, 7.7)	20.6	CII	(14.5, 7.5)	10.0	CH	1.07 11 (10.0.10.0)
20	40.3 54.7	СН.	1.49, dt (11.4, 2.6) 2 15 dd (11 2 2 7)	40.3	CH CH	1.50, d(11.0)	40.5 55.1	СН.	1.48, bd (11.1)	39.6 54.5	CH CH	1.48, d (10.6)	42.2 56.1	СН.	1.97. dd (12.8, 10.3) 3 27 dd (10.8 4 1)
21	54.7		2.15, uu (11.2, 2.7)	55.0		2.11. dd (9.8. 2.4	55.1		2.07, dd (11.2, 3.3)	54.5		2.07, m	50.1		5.27, uu (10.0, 4.1)
		~			~	, uu ().0, 2.1		~	, dd (11.2, 5.5)		~			~	
22 17 OCU	169.2	CU	- 251 -	169.2	CU	- 257 -	169.3	CU	267 -	169.2	CU	2.60 -	169.7	CU	274 -
17-0CH ₃	01.2 51.2		5.51, S	01.0 51.4		5.57, S	01.7 51.4		5.07, S	01./ 51.4		5.09, S	51.7		5.74, 8 2.62 s
22-0CH3	51.5	CH_3	3.39, s	51.4	CH_3	3.01, S	51.4	CH_3	3.03, S	51.4	CH_3	3.03, 8	51.4	CH_3	3.02, S
NH			8.40, s			8.91, s			7.62, s			-			1.53, s

Table S8. Comparison of NMR Data for Compounds 15-19 (CDCl₃, 125 MHz and 500 MHz)

Figure S76. Comparison of the ECD spectra acquired in CH₃OH for A) corynoxine A (15), B) 3-epirhynchophylline (17), C) 3-epicorynoxine B (18), and D) corynoxeine (19).

Compound	$S_{ m E}{}^a$	$S_{\text{-E}}{}^b$	ESI ^c
Mitragynine (1)	70.0	4.6	65.4
Isopaynantheine (6)	59.9	8.6	51.2
Epiallo-isopaynantheine (7)	62.3	8.6	53.7
Corynoxine A (15)	67.2	7.3	59.9
3-epirhynchophylline (17)	57.7	8.7	48.9
3-epicorynoxine B (18)	58.2	8.9	49.3

Table S9. Confidence level data for the comparison of calculated and experimental VCD spectra.

^{*a*}VCD spectral similarity for the proposed configuration. ^{*b*}VCD spectral similarity for the opposite proposed configuration. ^{*c*}Enantiomeric similarity index.

VCD Measurements. The samples were dissolved in CHCl₃ and placed in a BaF₂ cell with a path-length of 100 μ m. In both cases, the baseline was generated by subtracting the spectrum of the solvent acquired under the same conditions.

Computational Methods. The minimum energy structures were built with Spartan'10 software. The conformational analysis was performed using the Monte Carlo search protocol under the MMFF94 molecular mechanics force field. The conformers were submitted to Gaussian'09 for calculation of their geometry optimization, performed using the B3LYP/cc-pVTZ level of theory. The optimized values were used to calculate vibrational frequencies, dipole transition moments, and rotational strengths. Individual VCD spectra were obtained as the sum of Lorentzian bands with a half-width of 9 cm⁻¹ for each frequency value.

Figure S77. Comparison of the ¹H NMR before (black) and after (red) the acquisition of the VCD experiment. A) mitragynine (1), B) isopaynantheine (6), C) epiallo-isopaynantheine (7), D) corynoxine A (15), E) 3-epirhyncophylline (17), and F) 3-epicorynoxine B (18).