Supplementary Information

Post-synthetic Modification of Zirconium Metal-Organic Frameworks for Adsorption and Separation of Light Hydrocarbons

[^0]
Contents

Section 1. Synthesis of \mathbf{H}_{4} TPTA and PCN-207-FA 3-4
Section 2. The SEM and Crystal data for PCN-207, PCN-207-FA and PCN-207-BDC 5
Section 3. thermal and chemical stability6
Section 4. Gas storage and separation characteristics. 7-8

Section 1. Synthesis of H_{4} TPTA and PCN-207-FA

Synthesis of Dimethyl 4,4'-(2-hydroxyacetyl) dibenzoate (1) In a 100 ml round-bottom flask, thiamine hydrochloride (3.6 g , 10.70 mmol) was dissolved in 40 mL of 1:3 water/methanol mixture and cooled down using an ice bath before 10 mL of a 2 M NaOH solution was added dropwise for a period of 20 min . To the resulting solution 4-formyl benzoate ($29.8 \mathrm{~g}, 182 \mathrm{mmol}$) was added and then the mixture was heated to $60^{\circ} \mathrm{C}$ for 20 min and afterward at reflux conditions for 2 h . The resulting suspension was cooled to room temperature and the white solid was filtered off, washed with water, methanol and ethyl ether, then was dried on air. Yield: $21.7 \mathrm{~g}(72.5 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta=8.11(\mathrm{~d}, 2 \mathrm{H}), 8.01(\mathrm{~d}, 2 \mathrm{H}), 7.91(\mathrm{~d}, 2 \mathrm{H}), 7.57(\mathrm{~d}, 2 \mathrm{H}), 6.45(\mathrm{~s}$, $1 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$.
 added $4.5 \mathrm{~g}(13.5 \mathrm{mmol})$ of $\mathbf{3}, 3.12 \mathrm{~g}(40.5 \mathrm{mmol})$ of ammonium acetate, $2 \mathrm{~mL}(20.25 \mathrm{mmol})$ of acetic anhydride, and 11 mL of acetic acid. After refluxing for 4 h , the mixture was cooled down to room temperature, filtered, and then washed with hot acetic acid. Light-yellow powder was obtained in 54.4% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} \mathrm{CDCl}_{3}$): $\delta=8.01(\mathrm{~d}, 8 \mathrm{H}), 7.69(\mathrm{~d}, 8 \mathrm{H})$.

Synthesis of \mathbf{H}_{4} TPTA (3). Compound $2(5.1 \mathrm{~g}, 8.3 \mathrm{mmol})$ was suspended in 150 mL THF/ $\mathrm{H}_{2} \mathrm{O}(\mathrm{v}: \mathrm{v}=1: 1) .60 .0 \mathrm{~mL}$ of 10% NaOH solution was added to the suspension and stirred overnight. The pH was adjusted to approximately 3 using hydrochloric acid. The resulting brown precipitate was collected by centrifuge, washed with water, and dried under vacuum to yield H_{4} TPTA (3.9 g, 78%). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta=7.94$ (d, 8H), 7.67 (d, 8H).

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of H_{4} TPTA ($\mathbf{3 0 0} \mathbf{M H z}$, DMSO- \boldsymbol{d}^{6}).

Synthesis of PCN-207

$\mathrm{ZrCl}_{4}(20 \mathrm{mg}, 29 \mathrm{mM}), \mathrm{H}_{4}$ TPTA ($10 \mathrm{mg}, 6 \mathrm{mM}$), and benzoic acid ($600 \mathrm{mg}, 1.85 \mathrm{M}$) in DMF were charged in a Pyrex vial. The mixture (3 mL) was heated in a $120^{\circ} \mathrm{C}$ oven for 24 h . After cooling down to room temperature, the mixture was washed by DMF for three times and a colorless crystalline $\mathbf{P C N}-207$ was harvested.

Synthesis of PCN-207-FA

50 mg PCN-207, FA ($20 \mathrm{mg}, 172 \mathrm{mM}$) in 5 ml DMF were charged in a Pyrex vial. The mixture was heated in a $120^{\circ} \mathrm{C}$ oven for 24 h . After cooling down to room temperature, the mixture was washed by DMF for three times and a colorless crystalline PCN-

207-FA was harvested.

Section 2. The SEM and Crystal data for PCN-207, PCN-207-FA and PCN-207-BDC

Figure S2. The SEM of (a) PCN-207, (b) PCN-207-FA, (c) PCN-207-BDC

Table S1. Crystal data of PCN-207-FA, PCN-207-BDC and PCN-207

	$\mathrm{a}(\AA)$	$\mathrm{b}(\AA)$	$\mathrm{c}(\AA)$	a / b	Rotation of Ph 1	Rotation of Ph 2
PCN-207-FA	12.7331	29.7668	31.3904	0.4278	38.11°	38.11°
PCN-207-BDC	14.588	29.712	30.803	0.4910	67.48°,	114.39°
PCN-207	14.1135	30.892	29.961	0.9699	66.05°	115.12°,

Section 3. thermal and chemical stability

Materials and methods

All the materials were purchased and used without further purification. NMR data were collected on a Mercury 300 spectrometer. Thermo-gravimetric analysis (TGA) experiments were carried out on a Mettler Toledo TGA instrument with a heating rate of 10 C minl in the range of $25-800 \mathrm{C}$ under a N_{2} atmosphere. The powder XRD data were obtained on an X-Pert PRO MPD diffractometer with Cu -Ka radiation. Gas-sorption isotherms were carried out on a Micrometritics ASAP 2020 system.

Figure S3. (a) Thermogravimetric analysis (TGA) of PCN-207, PCN-207-FA and PCN-207-BDC. (b) Chemistry stability analysis of $\mathrm{PCN}-207-\mathrm{FA}$ in different pH value.

Section 4. Gas storage and separation characteristics

Figure S3. (a) Adsorption isotherms of hydrocarbonsa. (b) Selectivity of $\mathbf{C} 2 / \mathrm{C} 1$ and $\mathbf{C 3} / \mathbf{C 1}(0.5: 0.5)$ gas mixtures at 298 K .

Table S2. Comparison of the adsorption capacity of PCN-207-FA, PCN-207 and PCN-BDC for light hydrocarbons at 273 K (298K is in italics) and 1 bar

	$\mathrm{CH}_{4}\left(\mathrm{~cm}^{3} / \mathrm{g}\right)$	$\mathrm{C}_{2} \mathrm{H}_{2}\left(\mathrm{~cm}^{3} / \mathrm{g}\right)$	$\mathrm{C}_{2} \mathrm{H}_{4}\left(\mathrm{~cm}^{3} / \mathrm{g}\right)$	$\mathrm{C}_{2} \mathrm{H}_{6}\left(\mathrm{~cm}^{3} / \mathrm{g}\right)$	$\mathrm{C}_{3} \mathrm{H}_{6}\left(\mathrm{~cm}^{3} / \mathrm{g}\right)$
PCN-207-FA	$18.28 / 12.32$	$68.90 / 50.79$	$50.93 / 42.69$	$53.24 / 43.57$	$48.69 / 43.18$
PCN-207-BDC	$9.97 / 7.86$	$54.74 / 39.94$	$42.64 / 27.63$	$43.05 / 36.31$	$44.44 / 38.26$
PCN-207	$12.53 / 7.46$	$63.97 / 45.74$	$49.45 / 40.01$	$49.75 / 42.28$	$48.86 / 42.86$

Table S3. Comparison of the selectivity of PCN-207-FA, PCN-207 and PCN-BDC for light hydrocarbons at 273 K (298K is in italics) and 1 bar

	$\mathrm{CH}_{4}\left(\mathrm{~cm}^{3} / \mathrm{g}\right)$	$\mathrm{C}_{2} \mathrm{H}_{2}\left(\mathrm{~cm}^{3} / \mathrm{g}\right)$	$\mathrm{C}_{2} \mathrm{H}_{4}\left(\mathrm{~cm}^{3} / \mathrm{g}\right)$	$\mathrm{C}_{2} \mathrm{H}_{6}\left(\mathrm{~cm}^{3} / \mathrm{g}\right)$
PCN-207-FA	$47.04 / 17.08$	$18.81 / 13.02$	$39.76 / 17.14$	$329.27 / 95.28$
PCN-207-BDC	$76.71 / 20.12$	$43.42 / 27.46$	$92.64 / 32.51$	$1575.36 / 244.00$
PCN-207	$21.67 / 15.97$	$17.05 / 15.12$	$24.40 / 21.79$	$68.79 / 54.32$

Table S4. Comparison of the adsorption enthalpy of PCN-207-FA, PCN-207 and PCN-BDC for light hydrocarbons at 1 bar

	$\mathrm{Q}_{\mathrm{CH} 4}(\mathrm{KJ} / \mathrm{mol})$	$\mathrm{Q}_{\mathrm{C} 2 \mathrm{H} 2}(\mathrm{KJ} / \mathrm{mol})$	$\mathrm{Q}_{\mathrm{C} 2 \mathrm{H} 4}(\mathrm{KJ} / \mathrm{mol})$	$\mathrm{Q}_{\mathrm{C} 2 \mathrm{H} 6}(\mathrm{KJ} / \mathrm{mol})$	$\mathrm{Q}_{\mathrm{C} 3 \mathrm{H} 6}(\mathrm{KJ} / \mathrm{mol})$
PCN-207-FA	19.72	32.47	25.01	29.95	61.29
PCN-207	11.62	28.86	32.95	28.12	50.43
PCN-207-BDC	16.46	28.85	26.19	27.85	48.33

[^0]: Huihui He ${ }^{\dagger \#}$, Bingbing Guo ${ }^{\not{ }^{\ddagger} \#,}$, Yang Liu ${ }^{\dagger}$, Liangliang Zhang ${ }^{\dagger} * *$ and Wei Huang ${ }^{\dagger}$
 ${ }^{\dagger}$ Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) \& Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
 \neq Key Laboratory of Unconventional Oil \& Gas Development (China University of Petroleum (East China)), Ministry of Education, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, People's Republic of China

