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Supplementary Information 

1. Primary data processing 

As mentioned above, the data processing method first proposed by Upchurch1 is an integral part 

of the experimental protocol. As such, the mathematical translation of this method should not be 

regarded as actual “data modelling”, but as a necessary step in the progression from raw 

experimental data (titration volumes and refractive indices) towards processed data (binodal curve 

and tie-line compositions), complete with consistency checks (via mass balance) and associated 

confidence intervals. In comparison with the original, purely graphical, primary processing 

method, this is the main advantage of the mathematical reformulation proposed in this paper: it 

allows a systematic analysis of uncertainties and provides statistical tools for the interpretation of 

consistency criteria. 

1.1. Regression model  

As stated above, the goal in this phase of data processing (called henceforth primary data 

processing) is not to provide thermodynamic model for the phase behavior of the system under 

study, but to allow tie lines to be calculated from raw (volumetric and refractometric) data and to 

provide a basis for estimating uncertainties and for the correct interpretation of mass balance 

checks. As such, the regression model used in this phase is based on strictly empirical polynomial 

functions for both the binodal and the refractometric curve, whose order was established by leave–

one–out–cross–validation, as described below. In order to construct a proper regression procedure, 

it should be recognized that, along the binodal curve, both mole fractions are observed quantities, 
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so both are affected by comparable experimental errors. If normal distribution of errors is 

considered and correlation is neglected both within and across experimental observations ((x1, x2, 

nD) triplets along the saturation curve), the total negative log-likelihood of the data set (including 

cloud-point and refractometric data) is: 

ℒ = ∑ (𝑥2𝑖 − 𝑏𝑖𝑛(𝑥1𝑖
∗ ; 𝑎𝐵))

2𝑛
𝑖=1 + (𝑥1𝑖 − 𝑥1𝑖

∗ )2 + (𝑛𝐷,𝑖 − 𝑟𝑒𝑓(𝑥1𝑖
∗ − 𝑎𝑅))

2
   (1) 

where 

𝑏𝑖𝑛(𝑥; 𝑎𝐵) = ∑ 𝑎𝐵𝑖𝑥𝑖
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and 

𝑟𝑒𝑓(𝑥; 𝑎𝑅) = ∑ 𝑎𝑅𝑖𝑥𝑖

𝑝𝑅
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are the polynomial models for the binodal and refractometric curve, pB and pR are, respectively, 

their polynomial orders, aB and aR are the corresponding coefficient sets and x*
1i, 1,i n  are the 

“true” (unobservable) mole fractions for component 1.  

It should be noted that, if the normality and independence conditions are rigorously met, 

minimizing the objective function ℒ given by (1) provides maximum likelihood estimators for 

parameters aB, aR and x*
1i. Moreover, even if some of these conditions are violated, the above 

function still provides, upon minimization, good parameter estimates. However, in this case, any 

statistical inference should be based on non-parametric methods, as the maximum likelihood 

theory is no longer applicable. Such methods, namely classic and moving block bootstrap, will be 

used below to obtain confidence intervals for mass balance consistency checks. 

1.2. Regression algorithm  

The parameters of the primary data processing model are aB (polynomial coefficients for the 

binodal curve), aR (polynomial coefficients for the refractometric curve) and x*
1i (“true”, 

unobservable, mole fractions for component 1). Their best estimates are the solutions of the 

gradient system: 

∇ℒ = 0 



which decomposes into three blocks: 

A block of polynomial regression equations for the binodal. Simple algebra shows that the 

derivatives of L with respect to aBk can be written as:  
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which leads to  

∀𝑘 = 0, 𝑝𝐵
̅̅ ̅̅ ̅̅ •

𝜕ℒ
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 is the polynomial design matrix for the binodal: 
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These are the classical orthogonal equations for polynomial regression with predictor 𝑥1
∗. 

A block of polynomial regression equations for the refractometric curve. In much the same 

manner, the subsystem 
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 is the polynomial design matrix for the refractometric curve: 
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A block of independent polynomial equations for 𝑥1
∗. Finally, the derivatives with respect to 𝑥1𝑘

∗  

can be written as: 



−
𝜕ℒ

𝜕𝑥1𝑘
∗ = 𝑏𝑖𝑛′(𝑥1𝑘

∗ ; 𝑎𝐵)[𝑥2𝑘 − 𝑏𝑖𝑛(𝑥1𝑘
∗ ; 𝑎𝐵)] + (𝑥1𝑘 − 𝑥1𝑘

∗ ) + 𝑟𝑒𝑓′(𝑥1𝑘
∗ ; 𝑎𝑅)[𝑛𝐷,𝑘 − 𝑟𝑒𝑓(𝑥1𝑘

∗ ; 𝑎𝑅)] 

            (4) 

This particular structure of the gradient system leads to the following regression algorithm: 

1. Perform all required pre-processing on the raw data (i.e. transform volumetric into 

compositional data and transform rectangular into Gibbs– Roseboom triangular coordinates).  

2. Initialize the “true” mole fractions for component 1 with the experimental ones: 

𝑥1
∗ ← 𝑥1 

3. Solve subsystem (2) to obtain current estimates for the binodal coefficients aB. 

4. Solve subsystem (3) to obtain current estimates for the refractometric coefficients aR. 

 5. Solve equations (4) to obtain new estimates for the “true” mole fractions 𝑥1
∗. This step can be 

performed either using a polynomial equation solver, or via a Newton–type method, using the 

current estimates as initial guesses.  

6. Repeat steps 3 to 5 above until some convergence criterion is met. In this work, the convergence 

criterion was chosen to ensure that the relative change in the parameter with the highest absolute 

value is lower than 
M , where εM is the machine-precision.  

If the experimental data are not too noisy, this algorithm will converge in 3 to 5 iterations.  

The polynomial orders pB and pR were chosen such as to strike the best compromise between bias 

and variance, measured, respectively, by the coefficient of determination R2 and the leave–one–

out cross–validation error LOOCV. These are defined as: 
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∑ [𝑧𝑖

𝑒𝑥𝑝
− 𝑝(𝑥𝑖
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where the superscript exp designates an experimentally observed quantity, z is the model response 

(either mole fraction for component 2 or refractive index), x is the mole fraction of the reference 

component along the binodal line, z  is the average response along the binodal line, p is the fitting 

polynomial and n is the number of experimental points and 



𝐿𝑂𝑂𝐶𝑉 =
1

𝑛
∑[𝑧𝑖
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𝑒𝑥𝑝)]

2
𝑁

𝑖=1

 

where p−i is the regression polynomial estimated from the original set without the ith observation. 

All the above calculations were performed during a preliminary run, using independent classical 

regression models (without considering the errors in the independent variable x1) in order to speed 

up the process. 

As an example, Figure 3 illustrates this procedure as applied to select an optimal degree 

polynomial for the refractometric curve along the trichloroethylene + water + ethanol binodal line. 

The figure suggests that a cubic polynomial is the optimal model for the underlying data. A lower-

degree polynomial is too stiff to represent the data with any accuracy, while a higher-degree 

polynomial offers an insignificant gain in representation accuracy while significantly increasing 

the cross-validation error. This is due to the added flexibility, leading to overfitting.  

Example results for the trichloroethylene + water + ethanol system are shown in Figures 4 and 6. 

As it can be seen, both curves provide an excellent fit to the data. 

1.3. Residual analysis  

A necessary step to perform after parameter estimation is residual analysis. This provides 

information about the applicability of the maximum likelihood theory thus guiding the ensuing 

uncertainty analysis. The objectives of this process are first to detect any correlation or 

autocorrelation among residuals both within and across observations, and, if necessary, to suggest 

a particular error distribution for uncertainty estimation. It is motivated by the observation that, if 

the regression model is correct, the residuals are actually samples of the underlying error 

distributions. For the purposes of this work, residuals are defined as follows: 

• For the mole fraction of component 1 (the reference component):  

𝜀∗,𝑖 = 𝑥1𝑖 − 𝑥1𝑖
∗  

• For the mole fraction of component 2:  

𝜀𝑏𝑖𝑛,𝑖 = 𝑥2𝑖 − 𝑏𝑖𝑛(𝑥1𝑖
∗ ; 𝑎𝐵)  

• For the refractive index:  



𝜀𝑟𝑒𝑓,𝑖 = 𝑛𝑖 − 𝑟𝑒𝑓(𝑥1𝑖
∗ ; 𝑎𝑅)  

The analysis aimed at detecting any relationship among residuals, both across and within 

observation. Therefore, the main tool for this purpose was chosen to be Kendall’s rank correlation 

coefficient, as it is nonparametric so does not impose any particular form on the correlation 

function. In order to interpret its values, a hypothesis test was conducted, based on a null 

hypothesis of no correlation. This means that the null distribution of the correlation coefficient can 

be estimated from permutation re-samplings. In this work, the null distribution was estimated on 

the basis of 5000 random permutations, so the confidence intervals could be computed directly 

from the quantiles of these samples. The results are reported in Table S1 for the correlation 

between residuals and predictor 𝑥1
∗ and in table S2 for the autocorrelation among residuals (only 

lag-1 autocorrelation was considered). 

Table S1. Correlation coefficients for residuals and associated confidence intervals. 

Correlation type τ Confidence interval (95%) 

ε∗ vs. x∗
1 0.268 [-0.346, 0.333] 

εbin vs. x∗
1 -0.007 [-0.333, 0.320] 

εref vs. x∗
1 -0.150 [-0.333, 0.333] 

ε∗ vs. εbin -0.007 [-0.333, 0.333] 

 

Table S2. Autocorrelation coefficients for residuals and associated confidence intervals. 

Correlation type τ Confidence interval (95%) 

ε∗  0.382 [-0.346, 0.333] 

εbin  0.500 [-0.333, 0.320] 

εref  0.000 [-0.333, 0.333] 

 

These results show that the both the correlation of residuals along the binodal line within 

observations and the correlation of residuals along the refractometric curve across observations 

are statistically insignificant. However, the same results show a statistically significant correlation 

of residuals across observations along the binodal curve. Although this result is to be expected, 

due to the specific sequence of experimental steps described in the main paper, it shows that the 



estimates obtained from the above–mentioned algorithm are not maximum likelihood estimates, 

so any inference on them should be nonparametric.  

 

Figure S1. Mobile block bootstrap calibration to preserve autocorrelation in compositional 

residuals. The thick solid red line corresponds to the observed value. Block sizes are, 

respectively 1 (left panel) and 6 (right panel). 

In this work, statistical inference is performed via bootstrap. Due to the specific autocorrelation 

structure among residuals, resampling from compositional residuals was performed via moving 

block bootstrap,2 and resampling from refractive index residuals via classical bootstrap.3 The block 

length for moving block bootstrap was chosen to preserve autocorrelation (as it is a feature of the 

experimental design), i.e. the bootstrap distribution of τ to be centered around the observed value. 

Figure S1 illustrates the concept. 



1.4. Tie line calculation  

Tie line calculation is a very straightforward process. The necessary data are the feed composition 

and the pair of refractive indices for the coexistent phases. In fact, refractive indices provide 

enough information for tie line calculation, but the feed (global composition) provides a 

redundancy necessary for consistency tests. 

In order to compute tie lines, each refractive index is used to reverse interpolate the corresponding 

mole fraction for the reference component: 

𝑥1
∗𝐿1 ∶   𝑛𝐷

𝐿1 = 𝑏𝑖𝑛(𝑥1
∗𝐿1; 𝑎𝑅) 

and 

𝑥1
∗𝐿2 ∶ 𝑛𝐷

𝐿2  = 𝑏𝑖𝑛(𝑥1
∗𝐿2; 𝑎𝑅) 

It should be noted that, due to the construction of the regression model, these compositions are 

“true” mole fraction of the reference component. The second mole fraction is then computed 

directly from the binodal polynomial model: 

𝑥2
𝐿1 = 𝑏𝑖𝑛(𝑥1

∗𝐿1; 𝑎𝐵),  𝑥2
𝐿2 = 𝑏𝑖𝑛(𝑥1

∗𝐿2; 𝑎𝐵) 

The distance from feed to tie line is then computed using standard analytical geometry formulae. 

As an example, Figure 7 shows the results of these calculations. As it can be seen, tie lines are 

almost exactly aligned with the corresponding feed compositions, which proves the validity of the 

above regression procedure.  

1.5. Consistency analysis 

As shown in Figure 7, tie lines and feed compositions can be almost perfectly aligned. However, 

as with any data, the distance from feed to tie line is a stochastic quantity, subject to random 

fluctuations due to experimental errors. As such, its value is meaningless by itself, any 

interpretation requiring an associated sampling distribution or, at the very least, an estimation of a 

confidence interval. In this work, confidence intervals for these distances were determined as inter-

quantile intervals from bootstrap approximations to the sampling distributions, based on the 

following procedure:  



1. Perform bootstrap resampling on each set of residuals. Residuals along the refractometric curve 

were resampled by classic bootstrap,3 as they are non-correlated. Residuals along the binodal were 

resampled by moving block bootstrap,2 as they exhibit statistically significant autocorrelation.  

2. From each bootstrap sample, form a synthetic data set by adding the sample to the corresponding 

calculated value: 

𝑥1 = 𝑥1
∗ + 𝜀∗ 

𝑥2 = 𝑏𝑖𝑛 (𝑥1
∗; 𝑎𝐵) + 𝜀𝑏𝑖𝑛 

𝑛 = 𝑟𝑒𝑓 (𝑥1
∗; 𝑎𝑅) + 𝜀𝑟𝑒𝑓 

3. Perform the above-mentioned calculations (i.e. regression and tie line calculation) on each 

synthetic data set and collect the results.  

4. From the results for feed-to-tie-line distance, build sampling distributions and estimate 

confidence intervals as inter-quantile ranges. Based on these calculations, a tie line is deemed 

consistent with respect to mass balance if the confidence interval for the corresponding feed-to-

tie-line distance covers 0, distances being taken as positive or negative according to the position 

of the feed on one side or the other of the tie-line. Table S3 reports the tie lines along with their 

feed-to-tie-line distances and Table S4 reports the corresponding 95% confidence intervals for 

these distances. In these tables δ stands for the feed-to-tie-line distance, and the data (Gibbs-

transformed molar fractions) are for the trichloroethylene + water + ethanol system. 

 

Table S3. Tie lines and feed-to-tie-line distances for trichloroethylene + water + ethanol at 

294.15±0.01 K and 1008±1 mbar. 

No. x1
L1 x2

L1 x1
L2 x2

L2 δ 

1 0.7013 0.3499 0.3139 0.3275 0.0000 

2 0.7345 0.3296 0.2817 0.3065 0.0041 

3 0.7584 0.3126 0.2554 0.2875 0.0065 

4 0.7751 0.2995 0.2345 0.2711 0.0066 

5 0.7966 0.2812 0.1950 0.2374 0.0033 

6 0.8268 0.2526 0.1386 0.1830 0.0037 



As can be seed, at a confidence level of 95% and allowing for the effect of experimental errors, all 

tie lines are consistent with respect to mass balance. The confidence intervals are tight enough to 

support this hypothesis with a high degree of accuracy.  

Table S4. Feed-to-tie-line distances 95% confidence intervals for trichloroethylene + water + 

ethanol at 294.15±0.01 K and 1008±1 mbar. 

No. Confidence interval for δ (95%) 

1 [-0.0001, 0.0058] 

2 [-0.0003, 0.0100] 

3 [-0.0012, 0.0127] 

4 [-0.0011, 0.0130] 

5 [-0.0002, 0.0105] 

6 [-0.0002, 0.0108] 

 

1.6. Further results 

Applying the above-discussed procedure for the other three systems (namely isooctane + ethyl 

acetate + acetonitrile, water + acetonitrile + chloroform and cyclohexane + ethyl acetate + 

acetonitrile) yields the results reported in Tables S5, S6 and S7. 

 

Table S5. Tie lines given in terms of Gibbs-transformed molar fractions and feed-to-tie-line 

distances for isooctane + ethyl acetate + acetonitrile at 294.15±0.01 K and 1008±1 mbar. 

No. x1
L1 x2

L1 x1
L2 x2

L2 Confidence interval for δ (95%) 

1 0.27255 0.18767 0.60165 0.17693 [-0.01390, 0.00150] 

2 0.23315 0.17277 0.67085 0.15684 [-0.01218, 0.00245] 

3 0.17385 0.13345 0.73310 0.13025 [-0.01365, 0.00181] 

4 0.18020 0.14567 0.70510 0.14359 [-0.01086, 0.00070] 

 

 



Table S6. Tie lines given in terms of Gibbs-transformed molar fractions and feed-to-tie-line 

distances for water + acetonitrile + chloroform at 294.15±0.01 K and 1008±1 mbar. 

No. x1
L1 x2

L1 x1
L2 x2

L2 Confidence interval for δ (95%) 

1 0.58260 0.57625 0.80965 0.31515 [-0.09547, 0.11567] 

2 0.47500 0.58058 0.83825 0.26630 [-0.06599, 0.07298] 

3 0.31970 0.44548 0.88135 0.19061 [-0.02330, 0.00314] 

4 0.24230 0.33238 0.90490 0.14948 [-0.06695, 0.00799] 

 

Table S7. Tie lines given in terms of Gibbs-transformed molar fractions and feed-to-tie-line 

distances for cyclohexane + ethyl acetate + acetonitrile at 294.15±0.01 K and 1008±1 mbar. 

No. x1
L1 x2

L1 x1
L2 x2

L2 Confidence interval for δ (95%) 

1 0.33690 0.16905 0.73005 0.13276 [-0.01890, 0.00507] 

2 0.32440 0.16524 0.75635 0.12150 [-0.01526, 0.00325] 

3 0.29820 0.15588 0.76975 0.11544 [-0.02647, 0.00893] 

4 0.22915 0.12324 0.82015 0.09085 [-0.03253, 0.00119] 

 

As can be seen from these tables, all reported tie-lines are mass-balance consistent. However, for 

some tie-lines, the 95% confidence interval for the feed-to-tie-line distance is quite large. This can 

be attributed to the propagation of experimental errors from the cloud-point titration stage, which 

is a visual procedure, so prone to more experimental noise than more automated techniques. 

Moreover, this proves the point made above, that interpreting mass-balance consistency results 

(such as feed-to-tie-line distance) is meaningless without considering the uncertainty limits due to 

experimental errors. 

 

2. The invariance of interval coverage under affine transformations 

All calculations described above are performed in the Gibbs–Rooseboom coordinate system. In 

this section, a proof of invariance is given for the interval coverage property under the affine 

transformation linking Gibbs–Rooseboom and rectangular coordinates. 



Let  1 2,x x  denote the line segment delimited by 𝑥1, 𝑥2 ∈ ℝ2. Also, let y Ax T   be the image 

of 𝑥 ∈ ℝ2 under the affine transformation determined by the deformation matrix A and the 

translation vector T. From standard analytical geometry 

     1 2 1 2, 0,1 1x x x x x x           

With these notations, the image of any interior point can be successively rewritten as follows: 
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1 2

1 2

1 2
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This proves that, under any affine transformation of the Euclidean plane: 

   1 2 1 2, ,x x x y y y    

where y Ax T   is the image of point x under the affine transformation. 

This proves that the coverage property of any line segment is maintained under any affine 

transformation, so the above assessment of tie-line consistency with respect to mass balance is 

independent of the coordinate system. 

 

3. Comparison of experimental data herein with available literature data 

 

As mentioned before, for the water + ethanol + trichloroethylene and the isooctane + ethyl 

acetate + acetonitrile system, some previous liquid–liquid equilibrium data at ambient pressure 

exist in the literature, albeit at slightly different temperatures. Figures S2-S5 represent graphical 

comparisons of our experimental results with past work, as indicated in the figure captions.  

 



 

 

Figure S2. Experimental binodal curve (blue diamonds) and tie-lines (full color lines) for 

trichloroethylene + water + ethanol at 294.15 K compared with binodal curve data (mustard X’s) 

and tie-lines (dashed color lines) for the same system at 294.65 K published by Hayden et al.4 
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Figure S3. Experimental binodal curve (blue diamonds) and tie-lines (full color lines) for 

trichloroethylene + water + ethanol at 294.15 K compared with binodal curve data (brown full 

squares) and tie-lines (dashed color lines) for the same system at 293.15 K published by Reinders 

and de Minjer5 
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Figure S4. Experimental binodal curve (blue diamonds) and tie-lines (full color lines) for 

trichloroethylene + water + ethanol at 294.15 K compared with binodal curve data (mustard X’s) 

and tie-lines (dashed color lines) for the same system at 298.15 K published by Colburn and 

Phillips6 
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Figure S5. Experimental binodal curve (green triangles) and tie-lines (full color lines) for 

acetonitrile + isooctane + ethyl acetate at 294.15 K compared with tie-line data (colored X’s) 

and tie-lines (dashed color lines) for the same system at 298.15 K published by Ooms et al.7 

 

4. Conclusions  

A mathematical model was developed based on Upchurch’s1 purely graphic procedure for primary 

data processing. This model provides: 

 A greater degree of accuracy for the required calculations. 

 A way of performing statistical inference on all computed quantities, as exemplified 

above for feed-to-tie-line distances for trichloroethylene +water + ethanol. It should be 

stressed that such calculations, although very important in assessing the significance of 

the results, are impossible in Upchurch’s original graphic method. 

Moreover, it was proven that mass-balance consistency assessment for tie-lines is invariant under 

affine transformations of the Euclidean plane, so it needs not be repeated after reverting to 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Acetonitrile Isooctane 

Ethyl acetate 



Cartesian coordinates and is meaningless unless uncertainties due to experimental errors (noise) 

are taken into account. 
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