A zinc metal-organic framework for concurrent adsorption and detection of uranium

Xudong Qin,^a Weiting Yang,^{*a} Yonghang Yang,^a Dongxu Gu,^a Dongyu Guo,^{*b} and Qinhe Pan^{*a}

^a Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, China.

^b Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen 361000, China.

*Corresponding author: yangwt@hainanu.edu.cn; panqinhe@163.com; xiamenhaijin@163.com

Contents

Table S1 Crystal data and structure refinement parameters for HNU-50	. 2
Table S2 The kinetic parameters for the U(VI) sorption on HNU-50	. 2
Table S3 Adsorption constants for Langmuir and Freundlich isotherm models	. 2
Figure S1 Hydrogen bond and π - π stacking of HNU-50	. 3
Figure S2 Simulated and experimental powder X-ray diffraction patterns (PXRD) of HNU-50	. 3
Figure S3 TGA curve of HNU-50	. 3
Figure S4 Solution stability of HNU-50	. 4
Figure S5 PXRD of simulated, after adsorption and after elution of HNU-50	. 4
Figure S6 Emission spectra of PMA and HNU-50	. 4
Figure S7 The IR spectra of uranyl nitrate, as-synthesized and U(VI) loaded HNU-50	. 5
Figure S8 XPS survey spectra of HNU-50 before and after U(VI) adsorption	. 5
Figure S9 Emission spectrum of PMA and absorption spectrum of uranyl nitrate	. 5

Crystal data	HNU-50
Empirical formula	$Zn_2C_{21}N_3O_{15}H_{23}$
Formula weight	688.20
Crystal system	monoclinic
Space group	Сс
<i>a</i> (Å)	16.5622
b (Å)	9.4906
c (Å)	15.8484
α (°)	90
β(°)	95.957
γ (°)	90
Volume (Å ³)	2477.68
Ζ	4
$D_{\text{ calcd }}(\text{g/cm}^3)$	1.845
<i>F</i> (000)	1400.0
μ Mo Ka (mm ⁻¹)	2.009
Temperature (K)	150
Range of <i>h</i> , <i>k</i> , <i>l</i>	20,11,19
$\theta \min/\max$	5.37/74.728
Reflections collected/unique/	0.1021(4844)
Data/restraints/parameters	1.95/0.98
<i>R</i> indices (all data)	0.0331

Table S1. Crystal data and structure refinement parameters for HNU-50.

Table S2. The kinetic parameters for the U(VI) sorption on HNU-50.

Tuble 52. The killede parameters for the O((1) solption on Hitte 50.								
Pseudo-first kinetics model		Pseudo-second kinetics model						
K_{l} (min ⁻¹)	$q_e (\mathrm{mg/g})$	R^2	$K_2(\min^{-1})$	$q_e ({ m mg/g})$	R^2			
0.0083	400	0.9568	2.7627	452	0.9969			

Table S3. Adsorption constants for Langmuir and Freundlich isotherm models.

Langmuir adsorption isotherm			Freundlich adsorption isotherm		
$Q_m (mg/g)$	kı (L/mg)	\mathbb{R}^2	k _f (mg/g)	n	\mathbb{R}^2
632	0.265	0.9983	126	0.9708	0.9139

Figure S1. (A) Schematic diagram of H-bond between two-dimensional layers of **HNU-50**; (B) Diagram of π - π stacking between two layers of **HNU-50**.

Figure S2. Simulated and experimental powder X-ray diffraction patterns (PXRD) of HNU-50.

Figure S3. TGA curve of HNU-50.

Figure S4. PXRD of HNU-50 in aqueous solution with different pH for 12 hours.

Figure S5. PXRD of simulated, after adsorption and after elution of HNU-50.

Figure S6. Emission spectra of PMA (black, λ_{ex} =345 nm) and HNU-50 (red, λ_{ex} = 312 nm).

Figure S7. The IR spectra of uranyl nitrate, as-synthesized and U(VI) loaded HNU-50.

Figure S8. XPS survey spectra of HNU-50 before and after U(VI) adsorption.

Figure S9. Emission spectrum of PMA (red, $\lambda_{ex} = 345$ nm) and absorption spectrum of uranyl nitrate (black, $\lambda_{em} = 513$ nm).