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1. Line shape analysis 

The measured 17O DNP MAS spectra presented three sharp peaks (FWHM ~ 50 ppm) at 

536, 441 and 380 ppm, with large spinning sideband manifolds, attributed to first order 

quadrupolar broadening, on top of a very broad component (FWHM > 1000 ppm). This 

broad component is not visible with direct excitation1, but requires a Hahn echo 

experiment. Figure S1 a) shows a small increment in the relative intensity of the broad 

peak, when increasing the Fe(III) content from x=0.00125 to 0.02. Most surprisingly, broad 

and sharp signals do not show any significant difference in longitudinal magnetization 

build-up times (see Figure S1 b)). 

The much smaller quadrupolar coupling constant of 6Li compared to 17O enables an in-

depth study of the effect of paramagnetic centers on its NMR line shape. First, we notice 

that none of the samples presented an extremely broad peak, as observed on 17O, this was 
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further confirmed by observing no significant difference between direct excitation and 

Hahn echo measurements (not shown here). Further, the 6Li line shape cannot be 

deconvoluted satisfactory with a single Lorentzian or Gaussian shaped function. 

Reasonable agreements can be obtained using two Lorentzian lines, however, the 

properties of these lines are not conserved when modifying concentration or recycle delay 

of the measurement (see Figure S2 c)). Instead we attribute the line shape to a distribution 

of Lorentzian peaks, whose broadening reflects the distance to the nearest paramagnetic 

dopant. Note that this “stretched Lorentzian” (broader on the base and sharper in the center 

compared to a regular Lorentzian) is the result of the Fourier transform of a stretched 

exponential decay in the time domain. 

 

 

Figure S1. 17O DNP MAS Hahn echo spectra a) after full recovery in Fe00125LTO and 

Fe02LTO and b) after 40 and 2000 s build-up time in Fe005LTO. 

 

The trends observed on evolution of the full width at half maximum (FWHM) shown in 

Figure S2 a) and b) are in agreement with a model of a distribution of relaxation times and 

line broadenings due to the distribution of distances to the paramagnetic center. An overall 
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broadening is observed with increasing Fe(III) content, as the average distance between 

paramagnetic sites becomes shorter. The FWHM becomes smaller with increasing build-

up times, as nuclei in proximity to paramagnetic center are not only broadened but also 

have shorter T1,BU. Most remarkably, the linewidth obtained after full recovery with and 

without μW irradiation are indistinguishable within the error, indicating that 

hyperpolarization has spread through the entire sample. 

 

Figure S2. Full width at half maximum (FWHM) of 6Li spectra a) with varying concentration and 

after full magnetization build-up (>90% magnetization) and b) at fixed Fe(III) content of x = 0.005 

(Fe005LTO) and variable magnetization build-up time. c) Best line shape deconvolution of the 6Li 

DNP MAS signal in Fe005LTO using two Lorentzian functions after a recycle delay of 1 (left) and 

3000 s (right). 
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2. Relaxation 

As we have mentioned previously, fitting of the saturation recovery spectra via 

deconvolution of the spectrum with two Lorentzian functions does not give any meaningful 

result, as a consequence of the changes in the line shape. It is possible, nonetheless, to fit 

the evolution of the integrated area using two exponential functions: 

Where the fast relaxing component might be attributed to core nuclei, in close proximity 

to the paramagnetic center, and the slow relaxing to the bulk in which all nuclei have a 

common spin temperature due to spin diffusion. Results are given in Table S1. In general 

we observe a reasonable agreement between T1 (relaxation without μW) and TBU 

(polarization build-up time under μW irradiation). With increasing concentration, the fast 

relaxing component becomes more prominent, which would be in agreement with an 

increment in relative amount of core nuclei. However, this concept does not explain the 

significant reduction of T1,BU of the fast relaxing nuclei with concentration. 

 

 

 

 

 

 

 𝑀𝑧(𝑡) = 𝐴 · [1 − exp[−(𝑡/𝑇1,𝐵𝑈(𝐴))]] + 𝐵 · [1 − exp[−(𝑡/𝑇1,𝐵𝑈(𝐵))]]. (S1) 
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xFe(III) μW T1,BU(A) (s) T1,BU(B) (s) A/B 

0.02 
ON 22±2 3.1±0.5 0.92/1 

OFF 34±50 6±7 0.63/1 

0.01 
ON 180±15 23±3 1.37/1 

OFF 352±100 52±10 0.98/1 

0.005 
ON 371±30 34±3 1.43/1 

OFF 299±30 10±8 7.25/1 

0.0025 
ON 3814±170 954±100 3.78/1 

OFF 4012±440 302±70 4.17/1 

0.00125 
ON 4383±190 206±30 3.98/1 

OFF 4435±400 234 ±80 5.01/1 

Table S1. 6Li T1 and TBU obtained from fitting the integrated intensity of the saturation recovery 

experiments using two exponentials according to equation (S1), where xFe(III) is the mole fraction 

of Fe(III). 

 

A distribution of relaxation times is expected if the bulk nuclei do not have a common spin 

temperature. The magnetization build-up of such a system follows a stretched exponential 

behavior2. Best fits of the relaxation data obtained using equation (9) of the main document 

are given in Table S2. Within error margins, we have found no significant difference 

between T1 and TBU. Figure S3 shows the magnetization build-up times as a function of the 

Fe(III) concentration. The data shows a nearly inverse squared dependence with 

concentration, which following the discussion given in the main document is an indication 

of the absence of spin diffusion. In summary, we have found that the data can be explained 

fully with the concept of a distribution of relaxation times due to direct dipolar coupling to 

the dilute paramagnetic center.  
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xFe(III) μW T1,BU (s) β T95% (s) 

0.02 
ON 8.6±0.3 0.61±0.02 52±4 

OFF 13±3 0.75±0.2 56±25 

0.01 
ON 88±3 0.68±0.01 442±20 

OFF 140±10 0.78±0.06 576±80 

0.005 
ON 176±5 0.63±0.01 1007±40 

OFF 272±30 0.71±0.05 1263±170 

0.0025 
ON 3040±60 0.87±0.01 10673±260 

OFF 3640±300 0.70±0.02 17637±1700 

0.00125 
ON 3920±100 0.64±0.01 21853±800 

OFF 4170±500 0.70±0.03 20447±2800 

Table S2. 6Li T1 and TBU obtained from fitting the integrated intensity of the saturation recovery 

experiments using a single stretched exponential according to equation (9) of the main document, 

where xFe(III) is the mole fraction of Fe(III). 

 

 

Figure S3. Build-up time of 95% of the 6Li polarization obtained from fits of saturation recovery 

measurements with (red) and without (blue) μW irradiation. The dashed line is best fit of the μW 

ON data to the equation: T95%=ac-b, with c being the Fe(III) mole fraction. Best fit parameters: 

a = 292 ± 100 s, b = 2.17 ± 0.25. 
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3. Enhancements 

Table S3 andTable S4 summarize experimental parameters, obtained signal intensities 

and calculated enhancements for the 6Li and 17O measurements. 

xFe(III)  μW Mass 
(mg) 

t1 

(s) 
signal 
recovered 

ns ttot 

(min) 
S 
(a.u.) 

Snorm 
/scan 
(a.u.) 

Quench 
factor 

εON/OFF S/N  [S/N]norm 

/scan  

0.02 
ON 

35.8 
220 0.999 2 7.33 48.2 21.6 - 

44±2 
99 62.72 

OFF 620 1 8 82.67 4.37 0.489 0.58±0.03 6 1.90 

0.01  

ON 
35.7 

800 0.989 1 13.33 82.2 74.3 - 
118±7 

875 789.62 

OFF 800 0.979 1 13.33 0.693 0.63 0.76±0.04 9 8.20 

0.005  

ON 
35.8 

1650 0.983 1 27.5 102 92.6 - 
142±5 

1990 1811.85 

OFF 1650 0.973 1 27.5 0.71 0.65 0.78±0.04 14.5 13.34 

0.0025  

ON 
35.5 

11000 0.954 1 183.33 142 133 - 
149±5 

7859 7311.18 

OFF 11000 0.884 1 183.33 0.886 0.890 1.06±0.05 47 47.19 

0.00125  

ON 
35.4 

22000 0.95 1 366.67 131 122 - 
146±7 

6311 5879.19 

OFF 22000 0.957 1 366.67 0.904 0.836 1.00±0.05 42 38.84 

Table S3. 6Li parameter for the DNP measurements, where xFe(III) is the mole fraction of Fe(III), t1 the recycle 

delay, ns the number of scans, ttot the total experimental time, S the total integrated intensity of the spectrum, 

Snorm/scan the calculated intensity of a single scan for a rotor packed with 40 mg of sample and after full 

magnetization build-up and [S/N]norm/scan is defined analogously. Uncertainties are estimated from noise standard 

deviation after apodization. 
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xFe(III)  μW Mass 
(mg) 

t1 

(s) 
signal 
recovered 

ns ttot 

(min) 
S 
(a.u.) 

Snorm 
/scan 
(a.u.) 

εON/02OFF εON/OFF S/N  [S/N]norm 

/scan  

0.02 

OFF 

40.0 

4.8 0.47 19616 1569 3.34 0.36 1 1 5.4 0.08 

ON 4.8 0.47 1024 81.9 10.72 22.27 62±10 62±10 63 4.19 

ON 41 0.95 128 87.5 2.89 23.80 66±10 66±10 48 4.47 

0.01  ON 39.6 345 0.94 16 92.0 1.82 119.81 331±50 256±40 86 22.64 

0.005  ON 37.6 500 0.88 16 133.3 2.04 136.52 377±60 282±40 107 28.57 

0.0025  ON 40.8 1000 0.63 16 266.7 1.70 171.55 474±70 260±40 87 35.21 

0.00125  ON 38.8 1000 0.55 16 266.7 1.10 120.81 334±50 195±30 60 26.45 

Table S4. 17O parameter for the DNP measurements, where xFe(III) is the mole fraction of Fe(III), t1 the recycle 

delay, ns the number of scans, ttot the total experimental time, S the total integrated intensity of the spectrum, 

Snorm/scan the calculated intensity of a single scan for a rotor packed with 40 mg of sample and after full 

magnetization build-up and  [S/N]norm/scan is defined analogously. Uncertainties are estimated from noise 

standard deviation after apodization. 

 

4. Polarization enhancement via the Solid Effect 

For the following derivations we will consider a two spin ½ system where one of the spins 

is an electronic and the other a nuclear spin. The spin system is shown schematically in 

Figure 3 a) of the main document. Diagonalization of the interaction Hamiltonian leads to 

additional relaxation terms, as described by the group of S. Vega3,4. We will (safely) 

disregard the new terms arising from the nuclear relaxation, however, the new terms from 

the electronic relaxation are not negligible and will create significant paths for zero- (ZQ) 

and double-quantum (DQ) relaxation. The longitudinal relaxation matrix in the 

diagonalized frame is: 
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From this we will write the relevant rate equations, which can be interpreted as a 

transformation into Liouville space. For simplicity we will assume a perfectly sharp pulse, 

in this case, on-resonance with the DQ transition (completely analogue results can be 

obtained for irradiation at the ZQ transition). Thus, the only coherences we will excite are 

the DQ coherences whose transverse relaxation is T2DQ
3.  

The nuclear polarization at the steady-state arises as a consequence of saturating the DQ 

transition. Therefore, we will have to compute the population difference between the states 

connected via the DQ transition, p2 and p3.  

 

�̂�1 =

(

 
 

0 𝑅1𝑒 𝑅1𝑛 𝑅1𝐷𝑄
𝑅1𝑒 0 𝑅1𝑍𝑄 𝑅1𝑛
𝑅1𝑛 𝑅1𝑍𝑄 0 𝑅1𝑒
𝑅1𝐷𝑄 𝑅1𝑛 𝑅1𝑒 0

)

 
 
. 

(S2) 

 𝑑𝑝1
𝑑𝑡

= −𝑝1𝑊↑
𝑍𝑄 + 𝑝4𝑊↓

𝑍𝑄 − 𝑝1𝑊↑
𝑒 + 𝑝3𝑊↓

𝑒 − 𝑝1𝑊↑
𝑛 + 𝑝2𝑊↓

𝑛 , 

𝑑𝑝2
𝑑𝑡

= −𝑝2𝑊↑
𝐷𝑄
+ 𝑝3𝑊↓

𝐷𝑄
− 𝑝2𝑊↑

𝑒 + 𝑝4𝑊↓
𝑒 − 𝑝2𝑊↓

𝑛 + 𝑝1𝑊↑
𝑛 + 𝑐23

𝜔1
2
− 𝑐32

𝜔1
2
, 

𝑑𝑝3
𝑑𝑡

= −𝑝3𝑊↓
𝐷𝑄 + 𝑝2𝑊↑

𝐷𝑄 − 𝑝3𝑊↓
𝑒 + 𝑝1𝑊↑

𝑒 − 𝑝3𝑊↑
𝑛 + 𝑝4𝑊↓

𝑛 + 𝑐32
𝜔1
2
− 𝑐23

𝜔1
2
, 

𝑑𝑝4
𝑑𝑡

= −𝑝4𝑊↓
𝑍𝑄 + 𝑝1𝑊↑

𝑍𝑄 − 𝑝4𝑊↓
𝑒 + 𝑝2𝑊↑

𝑒 − 𝑝4𝑊↓
𝑛 + 𝑝3𝑊↑

𝑛 , 

𝑑𝑐32
𝑑𝑡

= 𝑝3
𝜔1
2
− 𝑝2

𝜔1
2
− 𝑐32𝑅2𝐷𝑄 , 

𝑑𝑐23
𝑑𝑡

= −𝑝3
𝜔1
2
+ 𝑝2

𝜔1
2
− 𝑐23𝑅2𝐷𝑄 . 

(S3) 
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Next we will write the equation entirely in terms of the populations p2 and p3. At the steady 

state condition 
𝑑𝑝4

𝑑𝑡
=
𝑑𝑝1

𝑑𝑡
= 0 and combining the rate equations for p1 and p4 we obtain 

after some rearrangements: 

Inserting this into equation (S4) gives: 

So far no approximations have been done. For further simplifying this equation some 

approximations will be necessary, before we proceed to that let us write the transverse 

magnetization in a convenient way: 

 

Approximations 

First we will assume that the electronic relaxation rate is much faster than any other rate, 

consequently, the rates between the populations 𝑝4 = 𝜀𝑒𝑝2 and 𝑝1 =
𝑝3

𝜀𝑒
 are constant. Next, 

 𝑑(𝑝2 − 𝑝3)

𝑑𝑡
= −2𝑝2𝑊↑

𝐷𝑄 + 2𝑝3𝑊↓
𝐷𝑄 − (𝑝2 + 𝑝1)𝑊↑

𝑒 + (𝑝3 + 𝑝4)𝑊↓
𝑒   

− (𝑝2 + 𝑝4)𝑊↓
𝑛 + (𝑝3 + 𝑝1)𝑊↑

𝑛 + 𝜔1(𝑐23 − 𝑐32). 

(S4) 

 −(𝑝2 + 𝑝1)𝑊↑
𝑒 + (𝑝3 + 𝑝4)𝑊↓

𝑒

= −2𝑝4𝑊↓
𝑍𝑄 + 2𝑝1𝑊↑

𝑍𝑄 − (𝑝4+𝑝2)𝑊↓
𝑛 + (𝑝3 + 𝑝1)𝑊↑

𝑛 . 

(S5) 

𝑑(𝑝2 − 𝑝3)

𝑑𝑡
= −2𝑝2𝑊↑

𝐷𝑄 + 2𝑝3𝑊↓
𝐷𝑄 − 2𝑝4𝑊↓

𝑍𝑄 + 2𝑝1𝑊↑
𝑍𝑄 − 2(𝑝2 + 𝑝4)𝑊↓

𝑛        

+ 2(𝑝3 + 𝑝1)𝑊↑
𝑛 + 𝜔1(𝑐23 − 𝑐32). 

(S6) 

 𝑑(𝑐32 − 𝑐23)

𝑑𝑡
= 𝑝3𝜔3 − 𝑝2𝜔1 +

𝑐23 − 𝑐32
𝑇2𝐷𝑄

. 
(S7) 
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we will asume that 𝑊↓
𝑍𝑄 =

𝑊↑
𝐷𝑄

𝜀𝑒
 and 𝑊↑

𝑍𝑄 = 𝜀𝑒𝑊↓
𝐷𝑄

. This means that the ZQ and DQ 

relaxation rates are equal. Both these approximations only require that the population 

difference due to the energy difference of the electrons is much larger than due to the 

nuclei, (1 − 𝜀𝑒) ≫ (1 − 𝜀𝑛), which of course is always the case in the high temperature 

approximation.    

Inserting these approximations into the terms affected by the ZQ and DQ relaxation rates 

in equation (S6) leads to: 

In analogy to the single spin ½ system5 we will introduce the variables 𝑁 = 𝑝2 + 𝑝3 and 

𝑛 = 𝑝2 − 𝑝3. 

and 

In the last step we used: 𝑛0 = (𝑝2 − 𝑝3)𝑒𝑞 = 𝑁
(𝑊↓

𝐷𝑄
−𝑊↑

𝐷𝑄
)

(𝑊↑
𝐷𝑄
+𝑊↓

𝐷𝑄
)
= 𝑁

1−𝜀𝑒

1+𝜀𝑒
    and 

𝑊↑
𝐷𝑄 +𝑊↓

𝐷𝑄 =
1

𝑇1𝐷𝑄
. In agreement with the definitions given by Hovav et al.3. 

𝑑(𝑝2 − 𝑝3)

𝑑𝑡
= −2(2𝑝2𝑊↑

𝐷𝑄 − 2𝑝3𝑊↓
𝐷𝑄) − 2(𝑝2 + 𝑝4)𝑊↓

𝑛 + 2(𝑝3 + 𝑝1)𝑊↑
𝑛

+ 𝜔1(𝑐23 − 𝑐32). 

(S8) 

𝑑(𝑝2 − 𝑝3)

𝑑𝑡
= 2 (𝑁(𝑊↓

𝐷𝑄 −𝑊↑
𝐷𝑄) − 𝑛(𝑊↓

𝐷𝑄 +𝑊↑
𝐷𝑄)) − 2(𝑝2 + 𝑝4)𝑊↓

𝑛

+ 2(𝑝3 + 𝑝1)𝑊↑
𝑛 +𝜔1(𝑐23 − 𝑐32), 

(S9) 

𝑑(𝑝2 − 𝑝3)

𝑑𝑡
= 2

(𝑛0 − 𝑛)

𝑇1𝐷𝑄
− 2(𝑝2 + 𝑝4)𝑊↓

𝑛 + 2(𝑝3 + 𝑝1)𝑊↑
𝑛 + 𝜔1(𝑐23 − 𝑐32). 

(S10) 
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Next we will focus on the terms affected by the nuclear relaxation rate, therefore, we use 

again the relations 𝑝4 = 𝜀𝑒𝑝2 and 𝑝1 =
𝑝3

𝜀𝑒
: 

Where we made use of the fact that (1 − 𝜀𝑒) ≫ (1 − 𝜀𝑛) and therefore, 𝑊↓
𝑛 ≈ 𝑊↑

𝑛, relative 

to the other rates. And in the last step we assumed that 𝜀𝑒 ≈ 1 and therefore 
1

𝜀𝑒
+ 𝜀𝑒 ≈ 2  

which is valid for high temperatures. This expression can be further simplified:   

−2(𝑝2 + 𝑝4)𝑊↓
𝑛 + 2(𝑝3 + 𝑝1)𝑊↑

𝑛 = −2𝑝2𝑊↓
𝑛(1 + 𝜀𝑒) + 2𝑝3𝑊↑

𝑛 (1 +
1

𝜀𝑒
) 

= 𝑁(−𝑊↓
𝑛 +𝑊↑

𝑛 −𝑊↓
𝑛𝜀𝑒 +

𝑊↑
𝑛

𝜀𝑒
) + 𝑛 (−𝑊↓

𝑛 −𝑊↑
𝑛 −

𝑊↑
𝑛

𝜀𝑒
−𝑊↑

𝑛𝜀𝑒) 

= 𝑁 (
𝑊𝑛

𝜀𝑒
−𝑊𝑛𝜀𝑒) − 𝑛 (2𝑊

𝑛 +𝑊𝑛 (
1

𝜀𝑒
+ 𝜀𝑒)) 

= 𝑁(𝑊𝑛 (
1

𝜀𝑒
− 𝜀𝑒)) − 2𝑛(2𝑊

𝑛). 

(S11) 

𝑁(𝑊𝑛 (
1

𝜀𝑒
− 𝜀𝑒)) − 2𝑛(2𝑊

𝑛) = 𝑁

(𝑊𝑛 (
1
𝜀𝑒
− 𝜀𝑒))

(2𝑊𝑛)
(2𝑊𝑛) − 2𝑛(2𝑊𝑛)

= 𝑁(
(
1
𝜀𝑒
− 𝜀𝑒)

2
)𝑅1𝑛 − 2𝑛𝑅1𝑛 

= 2
(𝑛0 − 𝑛)

𝑇1𝑛
 

(S12) 
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With 2𝑊𝑛 =
1

𝑇1𝑛
. In the last step we made the following approximation: (

1

𝜀𝑒
− 𝜀𝑒) ≈

4
1−𝜀𝑒

1+𝜀𝑒
. Which can be shown to be true for 𝜀𝑒 → 1, and is good approximation at 100 K and 

9.4 T, where 𝜀𝑒 ≈ 1.135. 

Introducing this result into the derivation of the population difference we get: 

Finally, at the steady state condition the difference of the population and coherences is 

constant and we can write: 
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+ 2

(𝑛0 − 𝑛)

𝑇1𝑛
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