Supplementary Information For

Optical Potential-Well Array for High-Selectivity, Massive Trapping and Sorting at Nanoscale

Yuzhi Shi¹, Haitao Zhao¹, Lip Ket Chin¹, Yi Zhang², Peng Huat Yap³, Wee Ser¹,

Cheng-Wei Qiu^{4*} and Ai Qun Liu^{1*}

¹ School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798

² School of Mechanical and Aerospace Engineering, Nanyang Technological University Singapore 639798

³ Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232

⁴ Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583

*Corresponding Author: chengwei.qiu@nus.edu.sg; eaqliu@ntu.edu.sg

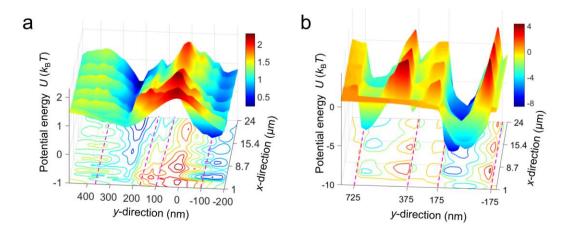


Fig. S1. Potential wells of the 200 nm nanoparticle (a) in a slot waveguide under TE mode excitation. W = 100 nm; G = 60 nm; (b) in a nanowavguide pair under TM mode excitation. W = 350 nm; G = 200 nm.

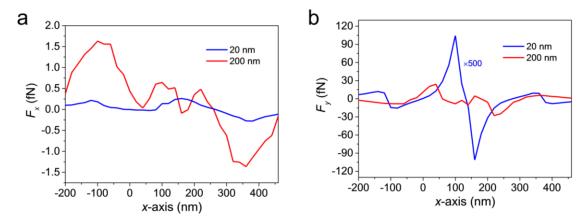


Fig. S2. Optical forces on the 20 and 200 nm nanoparticles. (a) F_x and (b) F_y slong the *y*-direction in the slot waveguide at $x = 7 \mu m$. The force profiles on the 20 nm nanoparticle resemble those of a nanoparticle in a gaussian beam.

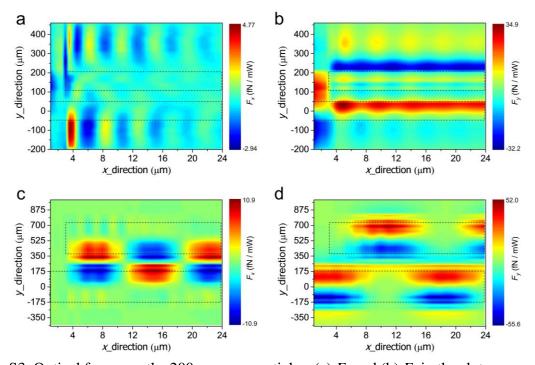


Fig. S3. Optical forces on the 200 nm nanoparticles. (a) F_x and (b) F_y in the slot waveguide with W = 100 nm and G = 60 nm. (c) F_x and (d) F_y in the nanowaveguide pair with W = 350 nm and G = 200 nm.

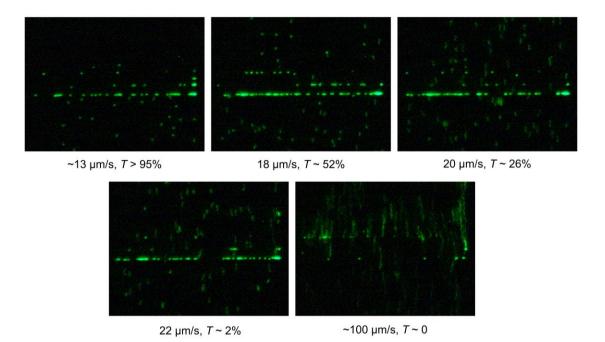


Fig. S4. Images of trapping 200 nm fluorescence nanoparticles under different flow velocities. (a) Trapping efficiency T > 95% when the flow velocity $v = 13 \mu m/s$; T = 52% when $v = 18 \mu m/s$; T = 26% when $v = 20 \mu m/s$; T = 2% when $v = 22 \mu m/s$; T = 0 when $v = 100 \mu m/s$. The laser power used was 1.2 mW.