supporting Information

An Effective Strategy to Achieve Excellent Energy Storage Properties in Lead-Free BaTiO₃ Based Bulk Ceramics

Zhonghua Dai^{1,*}, Jinglong Xie¹, Weiguo Liu^{1*}, Xi Wang², Lin Zhang³, Zhijian Zhou⁴, Jinglei Li³, and Xiaobing Ren^{4,5}

¹Shaanxi Province Key Laboratory of Thin Films Technology & Optical Test, Xi'an Technological University, Xi'an 710032, China

²Key Laboratory of Luminescence and Optical Information Ministry of Education School of Science, Beijing Jiaotong University, Beijing 100044, China

³Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China

⁴Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China

⁵Center for Function Materials, National Institute for Materials Science, Tsukuba 3050047, Ibaraki, Japan

*Corresponding Authors: zhdai@mail.xjtu.edu.cn; wgliu@163.com.

Figure S1. The density of BST-*x*BMN ceramics as a function of sintered temperature for 300 min (the density value of ceramics were measured by Archimedes method).

Figure S2. SEM micrographs on the original surfaces of the BST-*x*BMN ceramics (a) *x*=0.00,

(b) *x*=0.08, (c) *x*=0.10, (d) *x*=0.18, (e) *x*=0.20; and (f)-(j) average grain size of the various *x*.

Figure S3. Temperature (-150 °C to 150 °C) dependence of dielectric permittivity and dielectric loss of BST-*x*BMN ceramics measured from 1 kHz to 1000 kHz, (a) x=0.00, (b) x=0.08, (c) x=0.10, (d) x=0.18, (e) x=0.20; (f) Temperature (-150 °C to 150 °C) dependence of dielectric permittivity and dielectric loss of BST-*x*BMN ceramics measured at 1 kHz.

Figure S4. *P-E* loops measured under different electric fields at 10 Hz for BST-*x*BMN ceramics, (a) x=0.00, (b) x=0.08, (c) x=0.10, (d) x=0.18, (e) x=0.20; (f) breakdown strength (BDS) of BST-*x*BMN ceramics.

Materials	BDS		Tan δ	W	Wrec	η (%)	Ref.
	(kV·cm ⁻¹)	\mathcal{E}_r		(J·cm ⁻³)	(J·cm ⁻³)		
BaTiO ₃ -0.10Bi(Mg _{2/3} Nb _{1/3})O ₃	140	1509	0.022	1.18	1.13	95.7	[1]
BaTiO ₃ -0.09BiYbO ₃	93	-	-	0.86	0.71	82.6	[2]
BaTiO ₃ -0.10Bi(Zn _{0.5} Zr _{0.5})O ₃	264	1900	0.024	-	2.46	-	[3]
BaTiO ₃ -0.15Bi(Mg _{0.5} Zr _{0.5})O ₃	185	900	0.015	1.31	1.25	95.4	[4]
$BaTiO_3-0.12Bi(Mg_{0.5}Ti_{0.5})O_3$	224	1560	0.018	2.06	1.81	88	[5]
$BaTiO_{3}\text{-}0.08K_{0.73}Bi_{0.09}NbO_{3}$	327	2900	-	2.89	2.51	86.89	[6]
$BaTiO_{3}$ -0.12 $Bi(Li_{0.5}Nb_{0.5})O_{3}$	270	1180	0.01	2.31	2.03	88	[7]
$BaTiO_3-0.12Bi(Ni_{2/3}Nb_{1/3})O_3$	200	1266	0.004	2.18	2.09	95.9	[8]
$Ba_{0.5}Sr_{0.5}Ti_{0.997}Mn_{0.003}O_{3}$	290	2190	0.003	1.87	1.69	90.4	[9]
$(Bi_{0.85}Nd_{0.15})FeO_3-0.25BaTiO_3$	170	-	-	4.1	1.82	41.3	[10]
$Bi_{0.83}Sm_{0.17}Fe_{0.95}Sc_{0.05}O_{3}$	230	-	-	2.91	2.21	76	[11]
0.62BiFeO ₃ -0.3BaTiO ₃	240	-	-	3.40	2.45	72	[12]
$-0.08Nd(Mg_{2/3}Nb_{1/3})O_3$							
0.61BiFeO ₃ -0.33BaTiO ₃	130	-	-	2.02	1.66	82	[13]
$-0.06La(Mg_{0.5}Ti_{0.5})O_3$							
0.65BiFeO3-0.3BaTiO3-0.05Bi	180	600	0.005	3.7	2.06	53	[14]
$(Zn_{2/3}Nb_{1/3})O_3 + 0.1wt\%Mn_2O_3$							
$(0.75Bi_{0.5}Na_{0.5}TiO_3\text{-}0.25Bi_{0.5}K_{0.5}$	105	-	-	1.57	1.15	73.2	[15]
TiO ₃)-0.06BiAlO ₃							
$0.92Bi_{0.5}Na_{0.5}TiO_3$ -0.06Ba	105	2300	0.07	1.29	1.17	91	[16]
$TiO_{3}\text{-}0.2SrTi_{0.875}Nb_{0.1}O_{3}$							
$0.92 (0.35 Bi_{0.5} Na_{0.5} TiO_3 \text{-} 0.65 Ba$	172	2050	0.05	2.07	1.70	82	[17]
TiO_3)-0.08Na _{0.73} Bi _{0.09} NbO ₃							
$(Ba_{0.06}Bi_{0.47}Na_{0.47})_{0.98}La_{0.02}Ti_{0.96}Zr_{0.04}O_{3}$	136	2130	0.04	2.14	1.55	72.6	[18]
$Bi_{0.5}Na_{0.5}TiO_3\text{-}0.5SrTiO_3\text{-}3wt\%\ MgO$	227	2400	0.045	4.34	2.17	50	[19]
$(K_{0.5}Na_{0.5})NbO_3-0.2Sr(Sc_{0.5}Nb_{0.5})O_3-0.5$	5 400	-	-	3.55	2.6	73.2	[20]
mol% ZnO							
$NaNbO_{3}$ -0.10 $Bi(Mg_{2/3}Nb_{1/3})O_{3}$	300	825	0.023	3.4	2.8	82	[21]
NaNbO ₃ -0.20SrTiO ₃	310	1450	0.002	3.74	3.02	80.7	[22]
$NaNbO_3-0.07Bi(Mg_{0.5}Zr_{0.5})O_3$	255	1270	0.024	2.88	2.31	80.2	[23]
$Ba_{0.65}Sr_{0.35}TiO_3\text{-}0.10Bi(Mg_{2/3}Nb_{1/3})O_3$	400	1040	0.016	3.90	3.34	85.71	This
							work

Table S1. Energy storage properties reported for lead free dielectric ceramics.

Crossover Ferroelectrics

Figure S5. A phenomenological model for the doped relaxor system.

Landau Theory. The model system considered is a generic ferroelectric ceramic undergoing a first-order cubic-to-tetragonal ferroelectric transition upon cooling. The total free energy of the system includes the following three physically distinctive terms:

$$F = F(\mathbf{P},\overline{c}) + F(\mathbf{P},\varphi) + F(\mathbf{P}) = \int_{V} f_{bulk} dV + \int_{V} f_{couple} dV + \int_{V} (f_{elas} + f_{elec} + f_{grad}) dV$$

where V is the system volume, f_{bulk} denotes the Landau bulk free-energy density, f_{couple} denotes the free-energy density of the local polarization field, f_{elsa} is the elastic energy density, f_{elec} is the electrostatic energy density and f_{grad} is the gradient energy density.

The first term describing the global transition temperature effect (GTTE) and the bulk free energy density can be expressed by a Landau polynomial:

f _{bulk}

$$=A_{1}\sum_{i=1,2,3}P_{i}^{2}+A_{11}\sum_{i=1,2,3}P_{i}^{4}+\frac{A_{12}}{2}\sum_{i,j=1,2,3;i\neq j}(P_{i}P_{j})^{2}+A_{111}\sum_{i=1,2,3}P_{i}^{6}+A_{112}$$
$$\sum_{i,j=1,2,3;i\neq j}(P_{i}P_{j})^{4}+A_{123}(P_{1}^{2}P_{2}^{2}P_{3}^{3})$$

where A_1 , A_{11} , A_{12} , A_{111} , A_{112} , and A_{123} are the dielectric stiffness and higher-order stiffness coefficients.

The f_{couple} describes the local field effect (LFE), which can be expressed by Landau theory:

$$f_{couple} = -\int d^3x \sum_{i}^{3} P_i(\mathbf{x}) \cdot \varphi_{loc}(\mathbf{x})$$

where $\varphi_{loc}(x)$ is a random vector field created by the point defects.

Reference

- Wang, T.; Jin, L.; Li, C. C.; Hu, Q. Y.; Wei, X. Y. Relaxor Ferroelectric BaTiO₃-Bi(Mg_{2/3}Nb_{1/3})O₃ Ceramics for Energy Storage Application. *J. Am. Ceram. Soc.* 2014, *98*, 559-566.
- [2] Shen, Z. B.; Wang, X. H.; Luo, B. C.; Li, L. T. BaTiO₃-BiYbO₃ Perovskite Materials for Energy Storage Applications. J. Mater. Chem. A 2015, 3, 18146-18153.
- [3] Yuan, Q. B.; Yao, F. Z.; Wang, Y. F.; Ma, R.; Wang, H. Relaxor Ferroelectric 0.9BaTiO₃-0.1Bi(Zn_{0.5}Zr_{0.5})O₃ Ceramic Capacitors with High Energy Density and Temperature Stable Energy Storage Properties. J. Mater. Chem. C 2017, 5, 9552-9558.
- [4] Jiang, X. W.; Hao, H.; Zhang, S. J.; Lv, J. H.; Cao, M. H.; Yao, F. Z.; Liu, H. X. Enhanced Energy Storage and Fast Discharge Properties of BaTiO₃ Based Ceramics Modified by Bi(Mg_{1/2}Zr_{1/2})O₃. *J. Eur. Ceram. Soc.* **2019**, *39*, 1103-1109.
- [5] Hu, Q. Y.; Jin, L.; Wang, T.; Li, C. C.; Xing, Z.; Wei, X. Y. Dielectric and Temperature Stable Energy Storage Properties of 0.88BaTiO₃-0.12Bi(Mg_{1/2}Ti_{1/2})O₃ Bulk Ceramics. *J. Alloys Compd.* 2015, 640, 416-420.
- [6] Lin, Y.; Li, D.; Zhang, M.; Zhan, S. L.; Yang, Y. D.; Yang, H. B.; Yuan, Q. B. Excellent Energy-Storage Properties Achieved in BaTiO₃-Based Lead-Free Relaxor Ferroelectric Ceramics via Domain Engineering on the Nanoscale. *ACS Appl. Mater. Interfaces* 2019, *11*, 36824-36830.
- [7] Li, W. B.; Zhou, D.; Pang, L. X.; Xu, R.; Guo, H. Novel Barium Titanate Based

Capacitors with High Energy Density and Fast Discharge Performance. *J. Mater. Chem. A* **2017**, *5*, 19607-19612.

- [8] Zhou, M. X.; Liang, R. H.; Zhou, Z.; Dong, X. L. Combining High Energy Efficiency and Fast Charge-Discharge Capability in Novel BaTiO₃-Based Relaxor Ferroelectric Ceramic for Energy-Storage. *Ceram. Int.* 2019, 45, 3582-3590.
- [9] Huang Y. H.; Liu, B.; Liu, X. Q.; Li, J.; Wu, Y. J. Defect Dipoles Induced High-Energy Storage Density in Mn-Doped BST Ceramics Prepared by Spark Plasma Sintering. J. Am. Ceram. Soc. 2019, 102, 1904-1911.
- [10] Wang, D. W.; Fan, Z. M.; Zhou, D.; Khesro, A.; Murakami, S.; Feteira, A.; Zhao, Q. L.; Tan, X. L.; Reaney. I. M. Bismuth Ferrite-Based Lead-Free Ceramics and Multilayers with High Recoverable Energy Density. *J. Mater. Chem. A* 2018, *6*, 4133-4144.
- [11]Gao, X. L.; Li, Y.; Chen, J. W.; Yuan, C.; Zeng, M.; Zhang, A. H.; Gao, X. S.; Lu, X. B.;
 Li, Q. L.; Liu, J. M. High Energy Storage Performances of Bi_{1-x}Sm_xFe_{0.95}Sc_{0.05}O₃
 Lead-Free Ceramics Synthesized by Rapid Hot Press Sintering. *J. Eur. Ceram. Soc.* 2019, *39*, 2331-2338.
- [12] Wang, G.; Li, J. L.; Zhang, X.; Fan, Z. M.; Yang, F.; Feteira, A.; Zhou, D.; Sinclair, D.; Ma, T.; Tan, X. L.; Wang, D. W.; Reaney, I. M. Ultrahigh Energy Storage Density Lead-Free Multilayers by Controlled Electrical Homogeneity. *Energy. Environ. Sci.* 2019, *12*, 582-588.
- [13]Zheng, D. G.; Zuo, R. Z. Enhanced Energy Storage Properties in La(Mg_{1/2}Ti_{1/2})O₃-Modified BiFeO₃-BaTiO₃ Lead-Free Relaxor Ferroelectric Ceramics Within a Wide Temperature Range. J. Eur. Ceram. Soc. 2017, 37, 413-418.
- [14] Wang, D. W.; Fan, Z. M.; Li, W. B.; Zhou, D.; Feteira, A.; Wang, G.; Murakami, S.; Sun, S. K.; Zhao, Q. L.; Tan, X. L.; Reaney, I. M. High Energy Storage Density and Large Strain in Bi(Zn_{2/3}Nb_{1/3})O₃-Doped BiFeO₃-BaTiO₃ Ceramics. *ACS Appl. Energy Mater.* 2018, *1*, 4403-4412.
- [15]Yu, Z. L.; Liu, Y. F.; Shen, M. Y.; Qian, H.; Li, F. F.; Lyu, Y. N. Enhanced Energy Storage Properties of BiAlO₃ Modified Bi_{0.5}Na_{0.5}TiO₃–Bi_{0.5}K_{0.5}TiO₃ Lead-Free Antiferroelectric Ceramics. *Ceram. Int.* **2017**, *43*, 7653-7659.
- [16] Shi, J.; Liu, X.; Tian, W. C. High Energy-Storage Properties of Bi_{0.5}Na_{0.5}TiO₃-BaTiO₃-SrTi_{0.875}Nb_{0.1}O₃ Lead-Free Relaxor Ferroelectrics. J. Mater. Sci. Techno. 2018, 34, 2371-2374.
- [17] Yang, H. B.; Yan, F.; Lin, Y.; Wang, T.; Wang, F.; Wang, Y. L.; Guo, L. N.; Tai, W. D.;
 Wei, H. Lead-Free BaTiO₃-Bi_{0.5}Na_{0.5}TiO₃-Na_{0.73}Bi_{0.09}NbO₃ Relaxor Ferroelectric

Ceramics for High Energy Storage. J. Eur. Ceram. Soc. 2017, 37, 3303-3311.

- [18] Wang, H.; Hu, Q.; Liu, X. Q.; Zheng, Q. J.; Jiang, N.; Yang, Y.; Kwok, K. W.; Xu, C. G.; Lin, D. M. A High-Tolerance BNT-Based Ceramic with Excellent Energy Storage Properties and Fatigue/Frequency/Thermal Stability. *Ceram. Int.* 2019, 45, 23233-23240.
- [19]Huang, N.; Liu, H. X.; Hao, H.; Yao, Z. H.; Cao, M. H.; Xie, J. Energy Storage Properties of MgO-Doped 0.5Bi_{0.5}Na_{0.5}TiO₃-0.5SrTiO₃ Ceramics. *Ceram. Int.* **2019**, *45*, 14921-14927.
- [20]Qu, B. Y.; Du, H. L.; Yang, Z. T.; Liu, Q. H.; Liu, T. H. Enhanced Dielectric Breakdown Strength and Energy Storage Density in Lead-Free Relaxor Ferroelectric Ceramics Prepared Using Transition Liquid Phase Sintering. *RSC Adv.* 2016, *6*, 34381-34389.
- [21] Ye, J. M.; Wang, G. S.; Zhou, M. X.; Liu, N. T.; Chen, X. F.; Li, S.; Cao, F.; Dong, X. L. Excellent Comprehensive Energy Storage Properties of Novel Lead-Free NaNbO₃-Based Ceramics for Dielectric Capacitor Applications. *J. Mater. Chem. C* 2019, 7, 5639-5645.
- [22]Zhou, M. X.; Liang, R. H.; Zhou, Z. Y.; Yan, S. G.; Dong, X. L. Novel Sodium Niobate-Based Lead-Free Ceramics as New Environment-Friendly Energy Storage Materials with High Energy Density, High Power Density, and Excellent Stability. ACS Sustainable Chem. Eng. 2018, 6, 12755-12765.
- [23]Qu, N.; Du, H. L.; Hao, X. H. A New Strategy to Realize High Comprehensive Energy Storage Properties in Lead-Free Bulk Ceramics. J. Mater. Chem. C 2019, 7, 7993-8002.
- [24] Wang, D.; Ke, X. Q.; Wang, Y. Z.; Gao, J. H.; Wang, Y.; Zhang, L. X.; Yang, S.; Ren, X.
 B. Phase Diagram of Polar States in Doped Ferroelectric Systems. *Phys. Rev. B* 2012, *86*, No. 054120.
- [25] Li, F.; Lin, D. B.; Chen, Z. B.; Cheng, Z. X.; Wang, J. L.; Li, C. C.; Xu, Z.; Huang, Q. W.; Liao, X. Z.; Chen, L. Q.; Shrout, T. R.; Zhang, S. J. Ultrahigh Piezoelectricity in Ferroelectric Ceramics By Design. *Nature Mater.* 2018, *17*, 349-354.