Supporting Information for

Effects of Noncovalent Interactions on High-Spin Fe(IV)–Oxido Complexes

Victoria F. Oswald,[§] Justin L. Lee,[§] Saborni Biswas,[¶] Andrew C. Weitz, [¶] Kaustuv Mittra,[⊥] Ruixi Fan,[¶] Jikun Li,[¶] Jiyong Zhao,[†] Michael Y. Hu,[†] Esen E. Alp,[†] Emile L. Bominaar,[¶] Yisong Guo,[¶] Michael T. Green,^{§,⊥} Michael P. Hendrich,^{¶*} A.S. Borovik^{§*}

Table of Content

Figure S1. 57Fe PVDOS spectra and their simulations for all the Fe ^{IV} –oxido complexes.	S2
Figure S2. Negative-mode ESI mass spectra for [Fe ^{IV} poat(^{16/18} O)] ⁻ .	S2
Figure S3. Normalized Fe K-edge fluorescence spectra for $[Fe^{IV}poat(O)]^-$ and $[Fe^{IV}poat(O)LA^{II}]^+$ (LA = Mg ^{II} and Ca ^{II}).	S3
Figure S4. Unfiltered EXAFS data and their Fourier transforms [Fe ^{IV} poat(O)]- and [Fe ^{IV} poat(O)LA ^{II}] ⁺ (LA = Mg ^{II} and Ca ^{II}).	S4
Figure S5. 57Fe-enriched Mössbauer spectra for [Fe ^{IV} poat(O)LA ^{II}]+.	S5
Figure S6. Analysis of Fano interference of [Fe ^{IV} poat(O)] ⁻ complex.	S6
Figure S7. A plot of the energy of the LMCT absorbance versus the pK_a of $[LA(OH_2)_n]^{2+}$.	S6
Figure S8. The effects of H-bonds and electrostatic interactions on d-orbital splitting.	S7
Figure S9. The DFT optimized structures of $[Fe^{IV}poat(O)LA^{II}]^+$ (LA = Ca ^{II} , Sr ^{II} , and Ba ^{II}).	S7
Figure S10. Optical spectra showing the titration of [Fe ^{IV} poat(O)]- with [15c5Sr ^{II}](OTf) ₂ .	S8
Table S1. Best fits of EXAFS data.	S8
Table S2. Selected distances in the DFT structures.	S9
Table S3. DFT Coordinates for [Fe ^{IV} poat(O)] ⁻ and [Fe ^{IV} poat(O)LA ^{II}] ⁺ (LA = Mg ^{II} , Ca ^{II} , Sr ^{II} , Ba ^{II})	S9
Reference	S21

Figure S1. ⁵⁷Fe PVDOS spectra (red trace – experimental; grey trace – simulated) for [Fe^{IV}poat(O)]⁻ (A), [Fe^{IV}poat(O)---Mg^{II}]⁺ (B), [Fe^{IV}poat(O)---Ca^{II}]⁺ (C), [Fe^{IV}poat(O)---Sr^{II}]⁺ (D), and [Fe^{IV}poat(O)---Ba^{II}]⁺ (E). The green spectrum is of [Fe^{IV}poat(¹⁸O)]⁻. Samples were ~20mM ⁵⁷Fe in a DMF/THF mixture.

Figure S2. Negative-mode ESI mass spectra for $[Fe^{IV}poat(^{16}O)]^-$ (**A**) and $[Fe^{IV}poat(^{18}O)]^-$ (**B**) and their calculated spectra (**C**) and (**D**), respectively. The samples were prepared from $[Fe^{II}poat]^-$ and $(^{16}O)IBX$ -iPr and $(^{18}O)IBX$ -iPr, respectively, in EtCN at – 90 °C.

Figure S3. Normalized Fe K-edge fluorescence spectra of [Fe^{IV}poat(O)]⁻ (black), [Fe^{IV}poat(O)---Mg^{II}]⁺ (blue), and [Fe^{IV}poat(O)---Ca^{II}]⁺ (red). Inset is the zoom on the XANES region.

Figure S4. Unfiltered EXAFS data (left) and the Fourier transforms (right) for $[Fe^{IV}poat(O)]^-$ (**A**), $[Fe^{IV}poat(O)---Ca^{II}]^+$ (**B**), and $[Fe^{IV}poat(O)---Mg^{II}]^+$ (**C**). The black traces are experimental data and the colored traces are the corresponding simulated fits.

Figure S5. ⁵⁷Fe-enriched Mössbauer spectra of $[Fe^{IV}poat(O)]^-$ and with LA adducts as listed (red traces, 4.2 K, no applied magnetic field) generated at – 80°C. The black traces are fits for $\delta/\Delta Eq$ in mm/s as listed.

Figure S6. Fano interference observed for [Fe^{IV}poat(O)]- (see Figure 7A) from which the background was subtracted (dots). The solid curve is a simulation using eq S1,¹ from which the back ground was removed.

$$F(E) = f\left[\frac{\left(q + \left(\frac{E - E_0}{w}\right)\right)^2}{\left(1 + \left(\frac{E - E_0}{w}\right)\right)^2} - 1\right].$$
 S1

In eq S1, E is the energy of the incident radiation, E_0 and w are respectively energy at maximum and width parameter of the sharp ${}^{5}A \rightarrow {}^{3}E$ band, f is the back ground absorption, and q is a parameter which depends on the extent of the spin-orbit coupling between ${}^{5}E$ and ${}^{3}E$. Parameters used in simulation: $E_0 = 12120 \text{ cm}^{-1}$, $w = 120 \text{ cm}^{-1}$, f = 0.0019, and q = 1.1.

Figure S7. A plot of the energy of the LMCT absorbances versus the pK_a of $[LA(OH_2)_n]^{2+}$.

Figure S8. Schematic representation of the effects of H-bonds and electrostatic interactions on d-orbital energies.

Figure S9. DFT-optimized structures for $[Fe^{IV}poat(O)--Ca^{II}]^+$ (**A**), $[Fe^{IV}poat(O)--Sr^{II}]^+$ (**B**), and $[Fe^{IV}poat(O)--Ba^{II}]^+$ (**C**). Key: Ca^{II} ion is the green sphere, Sr^{II} ion is the yellow sphere, and Ba^{II} ion is the brown sphere. The remaining colors of the atoms are the same as those listed in the legend of Figure 10 and hydrogen atoms are omitted for clarity.

Figure S10. Optical spectra showing the titration of $[Fe^{IV}poat(O)]^-$ with $[15c5Sr^{II}](OTf)_2$ in THF/DMF at -60° C. Higher energy region (**A**) and lower energy region (**B**). Key: $[Fe^{IV}poat(O)]^-$ (black solid-line), $[Fe^{IV}poat(O)]^- + 0.5$ equiv of $[15c5Sr^{II}](OTf)_2$ (red solid-line); $[Fe^{IV}poat(O)]^- + 1.0$ equiv of $[15c5Sr^{II}](OTf)_2$ (blue solid-line); $[Fe^{IV}poat(O)]^- + 2.0$ equiv of $[15c5Sr^{II}](OTf)_2$ (gray solid-line); $[Fe^{IV}poat(O)]^- + 3.0$ equiv of $[15c5Sr^{II}](OTf)_2$ (purple solid-line); $[Fe^{IV}poat(O)]^- + 4.0$ equiv of $[15c5Sr^{II}](OTf)_2$ (orange dashed line) Initial $[[Fe^{IV}poat(O)]^-] = 0.20$ mM.

			Complex	
		[Fe ^{IV} poat(O)]-	[Fe ^{IV} poat(O)Ca ^{II}] ⁺	[Fe ^{IV} poat(O)Mg ^{II}]+
Fe–O	Ν	1	1	1
	R(Å)	1.65	1.67	1.67
	σ^2 (10-3)	2.34	1.36	3.18
Fe–N	Ν	4	4	4
	R(Å)	1.99	2.00	1.98
	σ^2 (10-3)	5.70	6.62	5.53
Fe–C	Ν	3	4	3
	R(Å)	2.85	2.95	2.94
	σ^2 (10-3)	5.75	2.41	1.63
Fe–P	Ν	3	3	3
	R(Å)	3.30	3.23	3.19
	σ^2 (10-3)	5.38	3.36	2.48
Fe–O _P	Ν	2	3	3
	R(Å)	3.72	3.59	3.46
	$\sigma^2 (10^{-3})$	3.32	4.05	4.71
GOF	E_0	-15.19	1.73	-4.63
	F	33	66	89
	F'	205	257	286

Table S1. Best fits of EXAFS data collected for the Fe^{IV}-oxido complexes

	Bond distances (Å)			
Complex	Fe ^{IV} –O	Fe ^{IV} OM ^{II}	$M^{II}-O(P)$	M ^{II} –O(15c5)
[Fe ^{IV} poat(O)]-	1.639	_	_	_
[Fe ^{IV} poat(O)Mg ^{II}] ⁺	1.665	2.05	2.02, 2.02	2.14, 2.18, 2.19, 4.63, 4.30
[Fe ^{IV} poat(O)Ca ^{II}]+	1.662	2.33	2.32, 2.33	2.55, 2.62, 2.63, 2.63, 2.70
[Fe ^{IV} poat(O)Sr ^{II}]+	1.659	2.45	2.45, 2.50	2.67, 2.68, 2.73, 2.75, 2.80
[Fe ^{IV} poat(O)Ba ^{II}]+	1.657	2.57	2.65, 2.59	2.81, 2.84, 2.88, 2.91, 2.97

Table S2. Selected distances from DFT for [Fe^{IV}poat(O)]⁻ and its LA bound derivatives^a

^aM^{II} is LA bound species.

Table S3A. Coordinates (x,y,z) for DFT optimized structure of [Fe^{IV}poat(O)]⁻.

	Х	Υ	Z
С	1.37687687	-0.39927127	-3.28214620
С	2.38957785	0.12491842	-2.27701413
С	-1.03207515	-0.99443656	-3.28204020
С	-1.08509016	-2.13292595	-2.27614813
С	-0.34286968	1.38934053	-3.28317220
С	-1.30301063	2.00531322	-2.27850213
Fe	0.00010203	-0.00008210	-0.64563201
Ν	0.00055401	-0.00128710	-2.84981417
Ν	1.97161070	-0.33989510	-0.92773703
Ν	-1.27990132	-1.53744934	-0.92759003
Ν	-0.69137029	1.87658315	-0.92925003
Ο	-0.00028595	0.00116091	0.99401611
Р	3.21561597	-0.55374751	0.15707005
Р	-2.08747815	-2.50628976	0.15834305
Р	-1.12746171	3.06081398	0.15584205
Н	1.57159470	-0.03383481	-4.29878627
Н	1.42686754	-1.48656200	-3.29149320
Н	2.44354227	1.21907979	-2.32190013
Н	3.38171903	-0.24645868	-2.55293115
Н	-1.99864463	-0.49395979	-3.29215920
Н	-0.81244577	-1.34645948	-4.29833727
Н	-1.90237510	-2.80688523	-2.55220115
Н	-0.16426791	-2.72647112	-2.31973313
Н	0.57388311	1.97608649	-3.29296220
Н	-0.75676691	1.37452198	-4.29977627
Н	-1.47709688	3.05007859	-2.55516715
Н	-2.27773830	1.50523603	-2.32303013
Ο	3.99311205	0.66259533	0.63431708
Ο	-2.56903197	3.12565399	0.63472008
Ο	-1.42242396	-3.78604962	0.63959808
С	-2.66867669	-1.48156903	1.54423415
С	-3.04359900	-0.13736299	1.41445314

С	-2.80445201	-2.11214129	2.79237323
С	-3.54939375	0.56709872	2.50814822
Н	-2.90698107	0.38793924	0.48289507
С	-3.31836479	-1.41030847	3.88448131
Н	-2.49009354	-3.14112951	2.89721224
C	-3.69421817	-0.07087442	3.74295330
Н	-3 78281597	1 61427487	2 37918521
н	-3 41062530	-1 90331929	4 84469039
Ц	4 07002408	0.47680471	4 50443836
C II	3 65190477	3 00032210	0.70544102
C	3.08662174	-3.00032217	0.76730002
C	4 52260848	-4.30183387	1 28700506
C	-4.32200848 E 16280022	4 77974940	-1.28700300
	-5.10280052	-4.//0/4040	-1.39921000
H	-3.31209409	-5.0/481381	-0.31346399
C	-5.69918404	-2.4///881/	-1.91544210
Н	-4.28262658	-1.009396/3	-1.23899705
C	-6.02142600	-3.83820302	-1.97433211
Н	-5.40837421	-5.83302726	-1.43929807
Н	-6.36371742	-1.74325336	-2.35344813
Н	-6.93448531	-4.15941001	-2.46048514
С	0.04811924	3.05065749	1.54378815
С	1.40038078	2.70513664	1.41566514
С	-0.43289014	3.48008086	2.79199824
С	2.26127696	2.78961531	2.51108021
Н	1.78925982	2.32669949	0.48399407
С	0.42984515	3.57308750	3.88581232
Н	-1.48175305	3.72050570	2.89543825
С	1.77843174	3.23089670	3.74594430
Н	3.28538881	2.46940079	2.38327521
Н	0.04689939	3.89697757	4.84602938
Н	2.44407656	3.29011094	4.59873737
С	-0.77064659	4.66236240	-0.70756402
Ċ	-1.78184686	5.63347981	-0.77128702
Č	0.47754126	4.94712097	-1.28704206
Č	-1 55316667	6 86032085	-1 40300506
Н	-2 73744392	5 40625136	-0 31911099
C	0.70827244	6 17324801	-1 91527510
Н	1 26964763	4 21218548	-1 23749505
C C	-0.30822299	7 13296847	-1.97606611
Ч	-2 34300698	7.60048535	-1 44455907
и П	1 67750024	6 38096426	2 35167414
н Ц	0.12861644	8 08/12018	2.007414
C II	2 61003450	1 56542173	1 54636014
C	2.01993439	-1.50542175	1.34030914
C	1.04200230	-2.30232093	1.42046414
C	3.23506729	-1.30412882	2.79556624
C II	1.28620599	-3.3489/128	2.5169/422
п	1.118/0940	-2./09/5503	0.4898/80/
С П	2.8849//82	-2.156/222/	3.88818/32
H	3.9694/4/1	-0.5//41445	2.89512224
C H	1.91232763	-3.15189952	5./5060231
H	0.49559237	-4.0/4/1192	2.39083920
H	3.35910008	-1.98745251	4.84742039
Н	1.63133964	-3.75710286	4.60419737
С	4.42340942	-1.66460151	-0.70617602

С	5.76976264	-1.27407422	-0.77305702
С	4.04531925	-2.88909661	-1.28281806
С	6.71704500	-2.08635476	-1.40502907
Н	6.05131610	-0.33202786	-0.32301799
С	4.99095759	-3.70279913	-1.91127010
Н	3.01298597	-3.20785903	-1.23091206
С	6.33011096	-3.30203075	-1.97515111
Н	7.75278622	-1.77214239	-1.44898307
Н	4.68575913	-4.64692318	-2.34540913
Н	7.06339870	-3.93382146	-2.46129014

Table S3B. Coordinates (x,y,z) for DFT optimized structure of [Fe^{IV}poat(O)---Mg^{II}]+

	Х	Y	Z
С	2.34352826	0.00827297	-3.70735198
С	3.34214637	-0.42564874	-2.63811451
С	3.18913144	-2.87138751	0.02198368
С	2.38774376	-3.51533997	-0.93249753
С	2.20969931	-4.90237622	-0.89413529
С	2.83318584	-5.66043044	0.09987299
С	3.63165619	-5.02825394	1.06040128
С	3.80802532	-3.64413091	1.02302815
С	5.20927069	-0.79829328	-0.26633133
С	6.02363976	-1.71549089	-0.95090715
С	7.38145117	-1.44847139	-1.14706560
С	7.93939084	-0.26242643	-0.66295063
С	7.13834259	0.65385322	0.02561538
С	5.78262016	0.38760875	0.22710249
С	0.21393225	1.29116946	-3.96307307
С	-0.75857393	0.13712024	-3.73315870
С	-2.33285406	-2.53432875	-1.78883208
С	-1.54768064	-3.21617562	-2.73380238
С	-1.71013753	-4.58969433	-2.93082509
С	-2.65033102	-5.29678798	-2.17536857
С	-3.41921206	-4.63077565	-1.21669894
С	-3.26766063	-3.25657033	-1.02461992
С	-3.62571984	0.00565730	-2.37542177
С	-4.35114746	-0.65430759	-3.38061547
С	-5.44229336	-0.02853475	-3.99098864
С	-5.82058619	1.25818407	-3.60171554
С	-5.10690569	1.92127834	-2.59759549
С	-4.01567306	1.30117720	-1.98735868
С	2.20594529	2.35172290	-2.87716689
С	1.40136925	3.24332983	-1.93190190
С	1.44170036	3.74409981	1.39316902
С	2.20596431	2.82703381	2.14364387
С	3.32893876	3.26297680	2.84799798
С	3.71101363	4.60831372	2.80966183
С	2.97346601	5.51860887	2.05023853
С	1.84757095	5.08963909	1.34018600
С	-1.04983704	4.44298105	-0.02740148
С	-1.69559747	4.44898637	-1.27539406
С	-2.63911897	5.43155773	-1.58565858

С	-2.95743922	6.41733234	-0.64836021
С	-2.33854090	6.40962456	0.60512375
С	-1.39525997	5.42827387	0.91578127
Fe	0.85971980	0.38650528	-1.28904569
Ν	1.45479227	1.07770249	-3.14337997
Ν	2.63281161	-0.44468288	-1.33006131
Ν	-0.80493104	-0.15816586	-2.27674356
Ν	0.69488280	2.37939741	-0.94961573
Ο	0.42076985	-0.24538453	0.18749265
Р	3.41940297	-1.05485964	0.02845926
Р	-2.17702450	-0.73735334	-1.55102002
Р	0.06376879	3.06423223	0.41209778
Н	2.84310586	0.36806161	-4.61250339
Н	1 70482379	-0.82943381	-3 97965129
Н	4 20576027	0.24459566	-2 61280830
Н	3 73162884	-1 41155682	-2 91113761
Н	1 89006369	-2 92436627	-1 68824482
Ц	1.59604321	5 38564726	1 63421033
н Ц	2 70281104	6 73400053	0.12582714
П П	4 11704085	-0.73400033	1 82003056
11 11	4.11/94903	-3.012/0913	1.02993930
п	4.42/30322	-3.101/1030	1.70723114
П	5.00/5//24	-2.04492028	-1.51602915
П	8.00081858	-2.10565524	-1.00853000
п	8.99095218	-0.05606550	-0.81203482
Н	7.57057128	1.366/3890	0.41306379
Н	5.16/2502/	1.08189274	0.78282103
Н	-0.24013986	2.21664/83	-3.62214411
Н	0.47641779	1.39844298	-5.02058276
Н	-1./3801658	0.426/1132	-4.12332928
Н	-0.44564596	-0./4122629	-4.30898704
Н	-0.80488687	-2.6///442/	-3.30465014
Н	-1.10741075	-5.10419299	-3.66741804
Н	-2.77582730	-6.36049934	-2.32626993
Н	-4.12220539	-5.17784745	-0.60561365
Н	-3.84412053	-2.76084432	-0.25669562
Н	-4.07842860	-1.65776877	-3.67680071
Н	-5.99698743	-0.54765325	-4.76061487
Н	-6.66808880	1.73848635	-4.07157042
Н	-5.40270820	2.91426024	-2.28666532
Н	-3.47357880	1.81176919	-1.20299297
Н	3.14291267	2.07495384	-2.40337752
Н	2.42843251	2.85931966	-3.82117370
Н	2.09768730	3.93697130	-1.44706781
Н	0.69622621	3.86251262	-2.49555695
Η	1.94843064	1.77717587	2.15417812
Н	3.90787929	2.54808698	3.41674322
Н	4.58079586	4.94177603	3.35968369
Н	3.27074179	6.55772116	2.00704612
Н	1.29141289	5.80705444	0.75333919
Н	-1.47137036	3.67342516	-1.99400191
Н	-3.12192423	5.42689801	-2.55365459
Н	-3.68326134	7.18182005	-0.88975550
Н	-2.58955930	7.16438313	1.33797623
Н	-0.93079552	5.43107486	1.89226191

0	3.02538751	-0.45362176	1.36112874
Ο	-0.74499907	2.06315967	1.24101291
Ο	-2.26538061	-0.42004791	-0.04965406
С	-1.16854400	1.45832892	4.17189135
Ο	-0.29585179	0.49504842	3.50145557
С	-2.60649461	0.95247633	4.11405141
Ο	-2.80926252	0.42095578	2.76607475
С	-4.20175276	0.31042725	2.29373866
Ο	-4.58702901	-2.09356193	2.76333356
С	-5.02677726	-0.73561662	3.02379075
Ο	-2.58999115	-4.24505215	2.12423941
С	-3.61987413	-2.63733014	3.71034449
Ο	-0.55668632	-1.84978113	2.37489888
С	-3.36155750	-4.08415966	3.34486673
С	-1.13640795	-4.27025339	2.22468049
С	-0.49943570	-3.07221612	1.54582468
С	0.62361907	-1.66122508	3.24874322
С	0.20654210	-0.63896246	4.27798628
Н	-0.84039876	1.62113503	5.19955746
Н	-3.30264017	1.77469761	4.29778356
Н	-4.67070428	1.29526443	2.38711170
Н	-5.06690504	-0.54762925	4.10320183
Н	-2.68928619	-2.07033128	3.67643876
Н	-4.04375274	-2.59313210	4.72298018
Н	-2.85576535	-4.58540292	4.17891090
Н	-4.31032294	-4.58406126	3.16068998
Н	-0.82160063	-4.34877761	3.27101907
Н	-0.80703110	-5.17179227	1.70319944
Н	0.54443209	-3.27052499	1.30201685
Н	-1.03386417	-2.83781232	0.63313446
Н	0.88198809	-2.60581607	3.73046487
Н	1.45737504	-1.30578943	2.63748868
Н	-0.58317203	-1.02787282	4.92521152
Н	1.05511643	-0.31830959	4.88408142
Mg	-1.09916164	0.09594664	1.51377545
Н	-1.05353845	2.36567842	3.59067656
Н	-2.79318220	0.16244164	4.84388547
Н	-6.04651054	-0.67613580	2.63979705
Н	-4.09337069	0.05013954	1.24600710

Table S3C. Coordinates (x,y,z) for DFT optimized structure of [FeIVpoat(O)---CaII]+

	Х	Υ	Z
С	1.89000	-0.69900	-3.88900
С	3.03000	-0.74800	-2.88200
С	3.82900	-2.51200	0.06100
С	3.09600	-3.50800	-0.60200
С	3.33300	-4.86200	-0.33900
С	4.30700	-5.23500	0.59000
С	5.04200	-4.25000	1.26000
С	4.80400	-2.90000	0.99900
С	5.10200	-0.03100	-0.77200
С	6.09700	-0.77900	-1.42400

С	7.28800	-0.17100	-1.83200
С	7.49700	1.19000	-1.59500
С	6.51600	1.94100	-0.94200
С	5.32700	1.33600	-0.52900
С	-0.41900	0.16400	-4.17400
С	-1.18300	-1.02000	-3.59400
С	-2.62600	-3.17600	-1.27200
С	-1.47800	-3.96000	-1.47000
С	-1.55600	-5.35500	-1.44300
С	-2.78400	-5.98400	-1.22100
С	-3.93400	-5.21400	-1.02000
С	-3.85600	-3.82000	-1.04200
С	-4.00100	-0.73400	-2.03500
С	-4.60100	-1.35500	-3.14600
С	-5.75200	-0.81500	-3.72700
С	-6.32100	0.34800	-3.20300
С	-5.73900	0.96900	-2.09400
С	-4.58700	0.43300	-1.51300
С	1.42400	1.71500	-3.49900
С	0.56900	2.64000	-2.63700
С	1.03800	3.87600	0.44500
С	1.96500	3.32400	1.35100
Ċ	3.09100	4.05200	1.73800
Ċ	3.31400	5.33500	1.22600
Ċ	2.40900	5.88500	0.31600
Ċ	1.27900	5.16000	-0.07600
Ċ	-1.69500	3.91800	-0.62500
Ċ	-2.53900	3.53600	-1.68200
Č	-3.64200	4.31900	-2.03200
Č	-3.92200	5.49000	-1.32500
Ċ	-3.10300	5.87100	-0.25800
Ċ	-1.99900	5.08900	0.09100
Ċ	-0.70200	2.47000	4.09300
Ċ	-2.06100	2.03900	4.60300
С	-3.98900	0.70100	3.80500
С	-3.84400	-0.70100	4.35800
С	-2.96400	-2.86800	3.58300
С	-2.29400	-3.42800	2.34600
С	0.12700	-3.44800	2.81400
С	1.26300	-2.45900	2.82100
С	1.78200	-0.32100	3.93700
С	1.04700	0.78100	4.65900
Ca	-1.09900	-0.17300	1.97400
Fe	0.54400	-0.07300	-1.41400
Н	2.24700	-0.45900	-4.89700
Н	1.38400	-1.66100	-3.92900
Н	3.76000	0.04100	-3.08400
Н	3.56400	-1.69500	-3.01000
Н	2.33500	-3.21500	-1.31200
Н	2.76500	-5.62000	-0.86200
Н	4.49700	-6.28100	0.78800
Н	5.79900	-4.53500	1.97900
Н	5.37800	-2.14500	1.52100
Н	5.95300	-1.83600	-1.60300

Н	8.04900	-0.75900	-2.32700
Η	8.42000	1.65900	-1.90900
Η	6.67800	2.99300	-0.74700
Н	4.57800	1.91100	-0.00200
Η	-0.99600	1.07000	-4.01600
Н	-0.23300	0.05000	-5.24700
Н	-2.19900	-0.99200	-3.99400
Н	-0.74700	-1.97000	-3.92500
Н	-0.52800	-3.47000	-1.63400
Н	-0.66600	-5.94800	-1.60100
Н	-2.84700	-7.06400	-1.21100
Н	-4.88800	-5.69700	-0.85300
Н	-4.75200	-3.23400	-0.89000
Η	-4.19000	-2.27300	-3.54600
Н	-6.20400	-1.30600	-4.57800
Н	-7.21500	0.76200	-3.64900
Η	-6.18100	1.86400	-1.67800
Н	-4.14200	0.90500	-0.64800
Н	2.43300	1.68400	-3.10100
Η	1.46800	2.05700	-4.53800
Н	1.15900	3.54100	-2.43200
Н	-0.31400	2.97300	-3.19200
Н	1.81100	2.32400	1.72900
Н	3.79700	3.61600	2.43200
Н	4.18600	5.89800	1.53100
Н	2.57800	6.87500	-0.08800
Η	0.58500	5.60400	-0.77600
Н	-2.34200	2.61500	-2.21300
Η	-4.27900	4.01200	-2.85100
Η	-4.77200	6.10100	-1.59900
Η	-3.32100	6.77200	0.29800
Н	-1.37500	5.39500	0.92000
Η	-0.16600	3.05200	4.84600
Η	-2.68100	2.91300	4.82500
Η	-4.54300	1.34400	4.49300
Н	-3.35800	-0.71000	5.33800
Η	-2.40600	-3.09400	4.49700
Н	-3.97600	-3.27700	3.67700
Н	-2.18500	-4.51300	2.41500
Н	-2.87200	-3.18200	1.46300
Н	-0.14900	-3.71200	3.83900
Н	0.40500	-4.35400	2.26900
Н	2.11100	-2.86200	3.38000
H	1.58200	-2.19500	1.81600
Н	2.46600	-0.83100	4.62300
H	2.33000	0.04000	3.06700
H	0.54300	0.39800	5.55100
H U	1./4100	1.5/500	4.94800
H U	-0.81100	3.04600	3.18000 E E0500
H U	-1.9/200	1.42500	5.50500
н П	-4.82900 4.50400	-1.1/200	4.44900 2.84800
H N	-4.50400	0.0/400	2.04800 2.44100
IN NT	0.88100	0.31600	-3.44100
IN	2.44800	-0.61100	-1.51800

Ν	-1.15300	-0.90600	-2.11200
Ν	0.18700	1.92300	-1.39400
Ο	0.33900	-0.51800	0.17400
Ο	3.06800	-0.04800	1.06600
Ο	-0.82700	1.94000	1.05500
Ο	-2.47000	-0.84100	0.21500
Ο	0.07100	1.29500	3.70700
Ο	-2.67200	1.26500	3.52400
Ο	-3.02900	-1.42300	3.39300
Ο	-0.99500	-2.79600	2.14500
Ο	0.74700	-1.26000	3.48800
Р	3.50000	-0.72900	-0.21500
Р	-2.47900	-1.35100	-1.22500
Р	-0.34000	2.80500	-0.10100

Table S3D. Coordinates (x,y,z) for DFT optimized structure of [Fe^{IV}poat(O)---Sr^{II}]+

	Х	Y	Z
С	1.89400	-0.68300	-4.01000
С	3.00700	-0.85300	-2.98500
С	3.57600	-2.73300	-0.01500
С	2.76800	-3.66200	-0.68800
С	2.87700	-5.03000	-0.41700
С	3.79700	-5.48400	0.53100
С	4.60600	-4.56700	1.21100
С	4.49600	-3.20200	0.94100
С	5.08300	-0.37600	-0.81900
С	6.03000	-1.21000	-1.43700
С	7.27800	-0.70700	-1.81500
С	7.59300	0.63400	-1.58300
С	6.65900	1.47100	-0.96500
С	5.41400	0.97100	-0.58100
С	-0.33900	0.36100	-4.30300
С	-1.20100	-0.78000	-3.77700
С	-2.68000	-3.00200	-1.49200
С	-1.54800	-3.79500	-1.73900
С	-1.64100	-5.19000	-1.73200
С	-2.86700	-5.81000	-1.48000
С	-4.00200	-5.03100	-1.23100
С	-3.90900	-3.63700	-1.23500
С	-4.02500	-0.54800	-2.27700
С	-4.61100	-1.17200	-3.39400
С	-5.74200	-0.62200	-4.00200
С	-6.30500	0.55500	-3.50100
С	-5.73700	1.17800	-2.38600
С	-4.60500	0.63100	-1.77700
С	1.60100	1.74600	-3.54800
С	0.80000	2.70300	-2.67100
С	1.36800	3.90700	0.37800
С	2.26000	3.32100	1.29700
С	3.42600	3.99300	1.67100
С	3.72100	5.25000	1.13300
С	2.84800	5.83400	0.21200

С	1.67900	5.16500	-0.16600
С	-1.38200	4.08000	-0.65500
С	-2.26800	3.71100	-1.68100
С	-3.34500	4.53400	-2.02200
С	-3.55400	5.73400	-1.33800
С	-2.69000	6.10200	-0.30200
С	-1.61400	5.28000	0.04000
С	-0.19100	2.37300	4.24900
С	-1.53400	2.07300	4.88600
С	-3.71100	1.06200	4.22500
С	-3.77000	-0.40200	4.60800
С	-3.36100	-2.60400	3.59100
С	-2.75200	-3.19900	2.33700
С	-0.36200	-3.59500	2.87500
Ċ	0.93000	-2.81500	2.85300
С	1.84800	-0.75000	3.86200
С	1.34700	0.44300	4.63800
Fe	0.55400	-0.03500	-1.54100
Н	2.28900	-0.44100	-5.00300
Н	1.31700	-1.60200	-4.09100
Н	3.80000	-0.11800	-3.14900
Н	3 46900	-1 83500	-3 13400
Н	2.05100	-3 30300	-1 41400
Н	2.05100	-5 73700	-0.94700
н	3 88900	-6 54300	0.73500
Н	5 32400	-4 91600	1 94200
н	5.12700	-2 49900	1.26900
н	5.80300	-2 25300	-1 61200
Н	8.00100	-1.36100	-2 28400
Н	8 56000	1 02200	-2.20400
Н	6.90300	2 50800	-0.77500
н	4 69900	1.61200	-0.08300
н	-0.84800	1.30400	-4 12400
Н	-0.04000	0.26900	-5 37700
н	-2 20700	-0.65700	-4 18500
н	-0.83500	-0.03700	-4.14300
н	-0.59900	-3.31300	-1.92900
Н	-0.76200	-5 79000	-1.92900
н	-2.94100	-6.88900	-1.72500
н	-4.95500	-5.50600	-1.04200
н	-4.79500	-3.04400	-1.04200
н Ц	4 20200	2 00700	3 77800
п П	6 1 8 5 0 0	-2.07700	-3.77800
н Ц	7 1 8 4 0 0	-1.11400	-4.03000
11 11	-7.10400	2.08200	-3.90900
п	-0.17000	2.06200	-1.96000
п	-4.1/400 2 50800	1.10300	-0.90600
п U	2.39800 1.60000	1.03000 2.11000	-5.15500
п	1.09000	2.11900 2.ECE00	-4.3/400
н п	1.44200	2.00700	-2.45200
H TT	-0.06200	3.09/00 2.24000	-3.22000
H TT	2.04800	2.54000	1.69800
H	4.10500	5.55200 5.76000	2.3/600
H	4.62400	5./6900	1.42800
Н	3.07200	6.80400	-0.20900

Н	1.00900	5.63500	-0.87300
Н	-2.12400	2.77100	-2.19500
Н	-4.01600	4.23700	-2.81700
Н	-4.38300	6.37500	-1.60600
Н	-2.85300	7.02600	0.23700
Н	-0.95700	5.57500	0.84700
Н	0.47100	2.87700	4.95800
Н	-2.01200	3.00200	5.21100
Н	-4.07200	1.69300	5.04100
Н	-3.16700	-0.61300	5.49700
Н	-2.84300	-2.93600	4.49600
Н	-4.41600	-2.88800	3.66500
Н	-2.82500	-4.28900	2.35000
Н	-3.25400	-2.81600	1.45400
Н	-0.67100	-3.78000	3.90700
Н	-0.24400	-4.54800	2.35400
Н	1.70600	-3.36400	3.39500
Н	1.27000	-2.62800	1.83400
Н	2.51500	-1.35000	4.48800
Н	2.35800	-0.45500	2.94200
Н	0.83500	0.12800	5.55200
Н	2.18300	1.09900	4.89900
Н	-0.32600	2.99100	3.36600
Н	-1.43100	1.40500	5.74700
Н	-4.80700	-0.69400	4.80700
Н	-4.32200	1.24400	3.34300
Ν	0.95600	0.39100	-3.54700
Ν	2.41000	-0.71500	-1.62900
Ν	-1.18300	-0.72500	-2.29200
Ν	0.37500	1.99000	-1.43700
Ο	0.29200	-0.55200	0.01400
Ο	3.01500	-0.21200	0.97200
Ο	-0.58500	2.09100	1.04500
Ο	-2.55500	-0.68700	0.01400
Ο	0.42400	1.14700	3.75400
Ο	-2.35000	1.43800	3.85000
Ο	-3.24800	-1.15200	3.47200
Ο	-1.36200	-2.78100	2.18800
Ο	0.65500	-1.54300	3.52100
Р	3.41300	-0.93000	-0.30100
Р	-2.52700	-1.17900	-1.43100
Р	-0.07500	2.90800	-0.13800
Sr	-1.11500	-0.11200	1.97000

Table S3E. Coordinates (x,y,z) for DFT optimized structure of [Fe^{IV}poat(O)---Ba^{II}]+

	Х	Y	Z
Ba	-1.14700	-0.14300	1.92900
С	2.02200	-0.45600	-4.12500
С	3.09600	-0.70800	-3.07100
С	3.27800	-2.72900	-0.04000
С	2.24500	-3.50900	-0.58100
С	2.14500	-4.87000	-0.27600

С	3.08300	-5.47000	0.56800
С	4.11700	-4.70300	1.11500
С	4.21200	-3.34200	0.81700
Ċ	5.12600	-0.62500	-0.82500
Č	5.92800	-1.55800	-1.50400
Č	7.24900	-1.24800	-1.83800
Č	7.78400	-0.00200	-1.50000
Č	6.99600	0.93200	-0.82100
Č	5 67700	0.62200	-0.48100
Č	-0.18000	0.65600	-4 43200
c	-1.07200	-0.50600	-4 01000
c	-2 50500	-2 96500	-1 90300
Č	-1 41800	-3 69300	-2 40900
C	-1.47900	-5.02500	-2.40200
C	-2 62800	-5 76800	-2.01200
C	-3.71700	-5.05300	-1 59300
c	3 65700	3.66200	1 40300
c	3 01 200	0.52000	2 50300
c	-4 49200	-0.52000	-3 70300
C	-4.47200 5.62100	-1.10000	-3.70300
C	6 18400	-0.01000	3 84400
C	-0.10400	1 20800	-3.04400
C	-5.01900	0.66000	-2.75700
C	1 77100	1.05600	-2.11400
C	0.05500	2 80200	-3.30000
C	1.46000	2.09200	-2.07400
C	2 42200	3.90000	1 1 2 4 0 0
C	2.42200	3.29000	1.13400
C	2.02200	5.94500 5.27700	1.53900
C	3.82200	5.27700	1.18600
C	2.88300	5.96200	0.41300
C	1.71000	5.51900 4.20700	0.00200
C	-1.30000	4.20700	-0.66800
C	-2.13300	5.90500 4 72800	-1./5/00
C	-3.21400	4.72800	-2.08200
C	-3.4/900	5.86700	-1.31800
C	-2.66900	6.1/100 E 24E00	-0.22000
C	-1.59100	5.34500	0.10700
C	-0.1/100	2.51000	4.40300 5.00000
C	-1.4/800	0.04000	5.06600
C	-3.08200	0.94900	4.48400
C	-3.72500	-0.52800	4.82200
C	-3.38200	-2.72000	3.77200 2.54100
C	-2./4600	-3.34100	2.54100
C	-0.37000	-3.07800	2.10000
C	0.94000	-2.93000	3.10200
C	1.90600	-0.77600	3.86900
C E.	1.45800	0.43000	4.66100
ге	0.62100	0.11100	-1.68000
H H	2.45900	-0.1//00	-5.09000
H	1.42600	-1.35400	-4.2/100
H H	3.92100 2.52100	0.00100	-3.18200
H H	3.52100 1 E1 400	-1./0200	-3.24/00
H	1.51400	-3.03800	-1.22200
Н	1.33900	-5.45700	-0.69800

Н	3.01500	-6.52700	0.79200
Н	4.85000	-5.16400	1.76500
Н	5.01600	-2.75700	1.24400
Н	5.53200	-2.53100	-1.76100
Н	7.85800	-1.97700	-2.35500
Н	8.80700	0.23600	-1.75900
Н	7.40900	1.89400	-0.55000
Н	5.07200	1.33400	0.06300
Н	-0.68100	1.59200	-4.20200
Н	0.03900	0.63500	-5.50500
Н	-2.07100	-0.33000	-4.41500
Н	-0.72100	-1.44400	-4.45800
Н	-0.52800	-3.16400	-2.71800
Н	-0.63800	-5.63500	-2.91400
Н	-2.68000	-6.84500	-2.19100
Н	-4.61200	-5.57800	-1.28400
Н	-4.50900	-3.11600	-1.11000
Н	-4.07700	-2.08800	-4.07300
Н	-6.06000	-1.12200	-5.17400
Н	-7.06000	0.98300	-4.32300
Н	-6.05900	2.11900	-2.35400
Н	-4.06500	1.15400	-1.24800
Н	2.74500	1.79500	-3.10800
Н	1.91300	2.37100	-4.56400
Н	1.60500	3.72600	-2.38400
Н	0.12900	3.33500	-3.24000
Н	2.27200	2.25400	1.38300
Н	4.32200	3.40200	2.12500
Н	4.72800	5.77500	1.50500
Н	3.06000	6.99000	0.12700
Н	0.99500	5.86400	-0.59800
Н	-1.94900	3.00600	-2.33200
H	-3.84500	4.48100	-2.92500
H	-4.31100	6.51100	-1.5/200
H	-2.8//00	/.04600	0.38100
H	-0.98000	5.58600	0.96600
H	0.50200	2.81600	5.10200
H	-1.94/00	2.85800	5.48900
H	-4.01/00	1.54400	5.33900
H H	-3.05900	-0./6900	5.65/00
н	-2.86/00	-3.02600	4.08800
п	-4.43000	-3.02900	3.84300 2.59200
н	-2.82800	-4.43100	2.58200
п	-3.23/00	-2.98/00	1.03800
п	-0.09000	-3./3900	4.22900
п	-0.25600	-4.08/00	2.78400
н Ц	1.09000	-3.44900	2 07200
н	2 63500	-2.03900	4 45000
Н	2.05500	-1.34200	2 90600
Н	1.01800	0.12200	2.20000 5.61500
Н	2.30900	1.09000	4.85000
Н	-0.35800	2.95500	3.54900
Н	-1.32200	1.24200	5.90400

Н	-4.74700	-0.81100	5.09500
Н	-4.33500	1.15800	3.63900
Ν	1.09500	0.61900	-3.64400
Ν	2.46200	-0.59900	-1.73100
Ν	-1.07300	-0.58500	-2.52400
Ν	0.45700	2.13300	-1.49300
Ο	0.32300	-0.47300	-0.15800
Ο	3.03700	-0.13100	0.88400
Ο	-0.52700	2.18700	0.98900
Ο	-2.52400	-0.75300	-0.25700
Ο	0.46700	1.12300	3.84600
Ο	-2.34600	1.36600	4.06500
Ο	-3.30400	-1.26700	3.63500
Ο	-1.35100	-2.94100	2.39300
Ο	0.70300	-1.59600	3.64900
Р	3.37600	-0.92700	-0.36200
Р	-2.42100	-1.14500	-1.73100
Р	0.00400	3.02200	-0.17300

References

(1) Fano, U. Effects of Configuration Interaction on Intensities and Phase Shifts, Phys. Rev. 1961, 124, 1866-1878.