Supporting Information

Insight into the Construction of $(\mathbf{3}, 6)$-connected $\mathbf{r t l}$, ant and Chiral anh Nets Based on Structural Investigation of Several MOFs via Steric Tuning of Linkers

Hui-Yan Liu*, Kang Wang, Yi Sun, Rui Wang and Hai-Ying Wang*

School of Chemistry \& Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China

EXPERIMENTAL SECTION

Synthesis of ligand ($\mathbf{L - O C H}_{\mathbf{3}}$). A mixture of 3,5-dibromo-4-methoxylbenzoate $(2.0 \mathrm{~g}, 6.2 \mathrm{mmol})$, pyridin-4-ylboronic acid ($2.5 \mathrm{~g}, 20.3 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(15.0 \mathrm{~g}, 56.3$ $\mathrm{mmol})$, and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4} \quad(0.5 \mathrm{~g}, 0.4 \mathrm{mmol})$ was added to 1,4 -dioxane $(100 \mathrm{~mL})$ and heated to $80{ }^{\circ} \mathrm{C}$ for 3 days under N_{2} atmosphere. The resultant was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was evaporated to dryness. The residue was washed briefly with ethanol to gain crude products, which were hydrolyzed by refluxing in 2 M aqueous NaOH and followed by acidification with $37 \% \mathrm{HCl}$ to afford final products. Yield $=1.4 \mathrm{~g}(78.9 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d_{6}, \delta \mathrm{ppm}$): 13.28 (s, $\mathrm{COOH}), 8.71$ (d, 4H, $J=4.0 \mathrm{~Hz}, \mathrm{ArH}$), 8.01 (s, 2H, ArH), 7.65 (d, 4H, $J=8.0 \mathrm{~Hz}$, ArH), 3.24 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$). Anal. Calcd (Found) for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 70.58 (70.66); H , 4.61 (4.67); N, 9.15 (9.05) \%. IR (KBr, cm^{-1}): 3040, 2994, 1698, 1606, 1547, 1463, $1431,1399,1333,1250,1234,1220,1125,1073,1017,994,834,777,696,626,608$.

Figure S1. (a) Coordination environment of $\mathrm{Co}(\mathrm{II})$ ion 1. (b) Coordination environment of L-H ligand. (c) The 3D framework of 1 viewed along a axis. (d) Schematic representations of $(3,6)$-connected $\boldsymbol{r t l}$ framework of $\mathbf{1}$ with $\left(4 \cdot 6^{2}\right)_{2}\left(4^{2} \cdot 6^{10 \cdot} \cdot 8^{3}\right)$ topology.

Figure S2. Coordination environment of $\mathrm{Co}(\mathrm{II})$ ion in $\mathbf{3}$.

(b)

Figure S3. Structural comparison of two nodes of JIU-Liu3 (a) and 3 (b) with ant topology.

(b)

Figure S4. Coordination environment of $\mathrm{Co}(\mathrm{II})$ ion in 5 (a) and 6 (b).

Figure S5. The (3,6)-connected 3D net of $\mathbf{5 / 6}$ with chiral $\boldsymbol{a} \boldsymbol{n} \boldsymbol{h}$ topology shown as a stick diagram (left) and as a augmented form (right).

Figure S6. Conformation of the three tritopic pyridine-carboxylate linkers in 1-6. (a, b) Conformation of L-H and L-CH3 linkers in $\mathbf{1}$ and 2 (rtl net). (c, d) Conformation of L- OCH_{3} and $\mathrm{L}-\mathrm{CH}_{3}$ linkers in $\mathbf{3}$ and (ant net). (e, f) Conformation of $\mathrm{L}-\mathrm{CH}_{3}$ linker in 5 and 6 (chiral anh net).

Figure S7. Coordination geometry of oxygen atoms in rutile (a) and anatase (b) with (Ti-O-Ti) angle is 99° and 156°, respectively.

Figure S8. The optimized geometry and selected number of atom for tritopic pyridine-carboxylate linkers L-H (a), $\mathrm{L}^{-} \mathrm{CH}_{3}$ (b) and $\mathrm{L}-\mathrm{OCH}_{3}$) (c). (The red, blue, gray and white spheres represent $\mathrm{O}, \mathrm{N}, \mathrm{C}$ and H atoms, respectively).

Figure S9. The $\chi_{\mathrm{m}} T$ versus T curves for $\mathbf{4}$ (a) and $\mathbf{6}$ (b) at 1000 Oe . The inset is plots of $\chi_{\mathrm{m}}{ }^{-1}$ versus T for $\mathbf{4}$ and $\mathbf{6}$ and the red solid line shows the Curie-Weiss fitting.

Figure S10. The infrared spectra for 1-6.

Figure S11. TGA data of as-synthesized 1-6.

Figure S12. The PXRD patterns of 1-6: a simulated PXRD pattern from the single-crystal structure and as-synthesized samples, respectively.

Table S1. Summary of Structural Information for 1-6

MOFs	1, 2	3, 4	5, 6
linker			
SBUs			
geometry of 6 -connected node	 octahedron	distorted trigonal- prism	significantly distorted trigonal- prism
shape of 3-connected node			
${ }^{\mathrm{b}} \Phi$	$\begin{gathered} 1: 27.6^{\circ}, 40.4^{\circ} ; \\ 38.5^{\circ}, 60.6 \\ \text { 2: } 45.0^{\circ}, 48.5^{\circ} ; \\ 48.6^{\circ}, 72.6^{\circ} \\ \hline \end{gathered}$	$\begin{gathered} 3: 34.2^{\circ}, 42.4^{\circ} \\ \text { 4: } 44.8^{\circ}, 47.7^{\circ} ; \\ 50.2^{\circ}, 84.9^{\circ} \end{gathered}$	$\begin{aligned} & \text { 5: } 44.7^{\circ}, 56.2^{\circ} \\ & \text { 6: } 45.8^{\circ}, 52.4^{\circ} \end{aligned}$
topology type		 ant net	

${ }^{a} \alpha$: Three tritopic pyridine-carboxylate ligands can be simplified as tritopic nodes in 1-6 with different open angles (α).
${ }^{\mathrm{b}} \Phi$: Dihedral angles (Φ) between the central benzene ring and terminal pyridyl rings.

Table S2. Summary of Geometrical Configuration of Nodes for 1-6 and Some (3,6)-connected rtl, ant and Chiral anh Nets Reported

MOFs	shape of tritopic node	geometry of 6-connected node	net	reference
[Zn-(PNMI)] 2 DMA	Y-shaped	octahedron	$r t l$	1
$\left[\mathrm{Cd}_{3}\left(\mathrm{SO}_{4}\right)_{2} \mathrm{~L}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]_{n}$	Y-shaped	octahedron	$r t l$	2
$\left[\mathrm{Co}_{4}(\mathrm{cpna})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]$	Y-shaped	octahedron	$r t l$	3
$\mathrm{Mg}(\mathrm{int})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	Y-shaped	octahedron	$r t l$	4
$\left[\mathrm{Co}(\mathrm{L}-\mathrm{H})_{2}\right] \cdot 5 \mathrm{H}_{2} \mathrm{O} \cdot 3 \mathrm{DM}$ (1)	Y-shaped	octahedron	$r t l$	this work
$\left.\left[\mathrm{Co}\left(\mathrm{L}-\mathrm{CH}_{3}\right)_{2}\right)\right] \cdot \mathbf{4 \mathrm { H } _ { 2 } \mathrm { O }}$-3DMF (2)	Y-shaped	octahedron	$r t l$	this work
$\left\{\left[\mathrm{KCo}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{7}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 8 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$	Y-shaped	octahedron	ant	5
$\mathrm{Zn} / \mathrm{BTB}$ ant	Y-shaped	octahedron	ant	6
$\left[\mathrm{Cu}_{3}\left(\mathrm{C}_{7} \mathrm{H}_{2} \mathrm{NO}_{5}\right)_{2}\right]_{\mathrm{n}}$	Y-shaped	octahedron	ant	7
$[\mathrm{Cd}(\mathrm{L}) \mathrm{Cl}]$	Y-shaped	octahedron	ant	8
$\left[\mathrm{Co}_{3}(\text { bpydc })_{2}(\mathrm{HCOO})_{2} \mathrm{H}_{2} \mathrm{O}\right] \cdot 2 \mathrm{DMF}$ (JLU-Liu3)	T-shaped	octahedron	ant	9
$\left[\mathrm{Zn}_{3}(\right.$ bpydc $\left.) 2(\mathrm{HCOO})_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{DMF}$ (JLU-Liu4)	T-shaped	octahedron	ant	9
$\mathrm{Mg}(\mathrm{nt})_{2}$	T-shaped	octahedron	ant	4
PPF-25	T-shaped	octahedron	ant	10
$\begin{aligned} & {\left[\mathrm{Co}_{2}\left(\mu-\mathrm{H}_{2} \mathrm{O}\right)(\mu-\mathrm{HCOO})_{2}\left(\mathrm{~L}-\mathrm{OCH}_{3}\right)_{2}\right]} \\ & \cdot 5 \mathrm{H}_{2} \mathrm{O} \cdot 7 \mathrm{DMF}(3) \end{aligned}$	T-shaped	triogal-prism	ant	this work
$\begin{aligned} & {\left[\mathrm{Co}_{2}\left(\mu-\mathrm{H}_{2} \mathrm{O}\right)(\mu-\mathrm{HCOO})_{2}\left(\mathrm{~L}-\mathrm{CH}_{3}\right)_{2}\right] \cdot 5 \mathrm{H}_{2} \mathrm{O} \cdot} \\ & \text { 7DMF (4) } \end{aligned}$	T-shaped	triogal-prism	ant	this work
$\left[\mathrm{Co}_{2}(\mathrm{cpna})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot$ DMF $\cdot 9 \mathrm{H}_{2} \mathrm{O}$	T-shaped	triogal-prism	anh	3
$\left[\mathrm{M}_{2}(\mathrm{cpna})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 0.5 \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{DMF}$	T-shaped	triogal-prism	anh	11
$\begin{aligned} & {\left[\mathrm{Co}_{2}\left(\mu-\mathrm{NO}_{3}\right)\left(\mathrm{L}^{2}-\mathrm{CH}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{NO}_{3}\right) \cdot 3 \mathrm{H}_{2} \mathrm{O}} \\ & \cdot 8 \mathrm{DMF}(5) \end{aligned}$	T-shaped	triogal-prism	anh	this work
$\begin{aligned} & {\left[\mathrm { Co } _ { 2 } (\mu - \mathrm { Cl }) \left(\mathrm{L}^{\left.\left.-\mathrm{CH}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{NO}_{3}\right) \cdot 5 \mathrm{H}_{2} \mathrm{O}}\right.\right.} \\ & \text { 8DMF (6) } \end{aligned}$	T-shaped	triogal-prism	anh	this work

1. Medishetty, R.; Jung, D.; Song, X.; Kim, D.; Lee, S. S.; Lah, M. S.; Vittal, J. J. Solvent-induced structural dynamics in noninterpenetrating porous coordination polymeric networks. Inorg. Chem. 2013, 52, 2951-2957.
2. Zhou, W. W.; Zhao, W.; Wang, F. W.; Fang, W. Y.; Liu, D. F.; Wei, Y. J.; Xu, M.; Zhao, X.; Liang, X. A 3D metal-organic framework with a rutile topology network, right- or left- handed helical chains and tunable UV-to-visible photoluminescence. RSC Adv. 2015, 5, 42616-42620.
3. Hou, L.; Liu, B.; Jia, L. N.; Wei, L.; Wang, Y. Y.; Shi, Q. Z. Two new $(3,6)$-connected frameworks based on an unsymmetrical tritopic pyridyldicarboxylate ligand and Co2 dimer: structures, magnetic, and sorption properties. Crystal Growth Des. 2012, 13, 701-707.
4. Liu, T.; Luo, D.; Xu, D.; Zeng, H.; Lin, Z. An open-framework rutile-type magnesium isonicotinate and its structural analogue with an anatase topology. Dalton Trans. 2013, 42, 368-371.
5. Xiang, S.; Wu, X.; Zhang, J.; Fu, R.; Hu, S.; Zhan, X. A 3D canted antiferromagnetic porous metal-organic framework with anatase topology through assembly of an analogue of polyoxometalate. J. Am. Chem. Soc. 2005, 127, 16352-16353.
6. Caskey, S. R.; Wong-Foy, A. G.; Matzger, A. J. Phase selection and discovery among five assembly modes in a coordination polymerization. Inorg. Chem. 2008, 47, 7751-7756.
7. Zou, J. P.; Peng, Q.; Wen, Z.; Zeng, G. S.; Xing, Q. J.; Guo, G. C. Two novel metal-organic frameworks (MOFs) with (3,6)-connected net topologies: syntheses, crystal structures, third-order nonlinear optical and luminescent properties. Crystal Growth Des. 2010, 10, 2613-2619.
8. Ji, C.; Li, B.; Ma, M. L.; Zang, S. Q.; Hou, H. W.; Mak, T. C. W. A series of five divalent zinc and cadmium coordination polymers based on a new bifunctional ligand: syntheses, crystal structures, and properties. CrystEngComm 2012, 14, 3951-3958.
9. Wang, J.; Luo, J.; Zhao, J.; Li, D. S.; Li, G.; Huo, Q.; Liu, Y. L. Assembly of two flexible metal-organic frameworks with stepwise gas adsorption and highly selective
CO_{2} adsorption. Crystal Growth Des. 2014, 14, 2375-2380.
10. Verduzco, J. M.; Chung, H.; Hu, C.; Choe, W. Metal-organic framework assembled from T-shaped and octahedral nodes: a mixed-linker strategy to create a rare anatase TiO_{2} topology. Inorg. Chem. 2009, 48, 9060-9062.
11. Hou, J. J.; Zhang, R.; Qin, Y. L.; Zhang, X. M. From (3,6)-connected kgd, chiral $\boldsymbol{a} \boldsymbol{n} \boldsymbol{h}$ to $(3,8)$-connected tfz-d nets in low nuclear metal cluster-based networks with triangular pyridinedicarboxylate ligand. Crystal Growth Des. 2013, 13, 1618-1625.
