Engineering light-up aptamers for the detection of RNA hairpins through kissing interaction.

Arghya Sett,^a Lorena Zara,^{a, b} Eric Dausse,^a and Jean-Jacques Toulmé^{a,b*}

^a ARNA Laboratory, Inserm U1212, CNRS UMR5320, University of Bordeaux, 33076 Bordeaux, France ^b Novaptech, 146 rue Léo Saignat, 33076 Bordeaux

Corresponding Author

E-mail: jean-jacques.toulme@inserm.fr Phone : +33 (0)557 57 10 17

Table S1: Sequences of the parent MG aptamer, pre-miR let7b, K4 and malaswitch (Msw) variants.

Table S2: Sequences of pre-miR 206, K206 and MDMD malaswitch variants.

Figure S1: Predicted secondary structures (Mfold) of full-length pre-miRNAs.

Figure S2: Effect of magnesium on the fluorescence of MDMD-MG-K206 complexes.

Figure S3: Specificity of Msw6.1 and MDMD1 malaswitches.

Figure S4: Test of sensing properties of chemically modified MDMD1.2

Candidates	Sequences (5' to 3')
MG aptamer:	GGAUCCCGACUGGC <u>GAGA</u> GCCAGGUAACGAAUGGAUCC
pre-miR let7b	CGGGGUGAGGUAGUAGGUUGUGUGUUUCAGGGCA <u>GUGAUGU</u> UGCCCCUCGGAAGAUAACUAUACAACCUACUGCCUUCCCUG
K4	GCA <u>GUGAUGU</u> UGC
Msw1	GGAUCCCGA CU <u>ACAUCAC</u> AG GUAACGAAUGGAUCC
Msw2	GGAUCCCGA CU <u>CAUCAC</u> AG GUAACGAAUGGAUCC
Msw3	GGAUCCCGA CU <u>ACAUCA</u> AG GUAACGAAUGGAUCC
Msw4	GGAUCCCGA CU <u>UCAUCA</u> AG GUAACGAAUGGAUCC
Msw5	GGAUCCCGA CU <u>ACAUCU</u> AG GUAACGAAUGGAUCC
Msw6	GGAUCCCGA CU ACAUCAG AG GUAACGAAUGGAUCC
Msw1.1	GGAUCCCGA CU <u>GACAUCAC</u> AG GUAACGAAUGGAUCC
Msw1.2	GGAUCCCGA CU <u>ACAUCAC</u> CG GUAACGAAUGGAUCC
Msw1.3	GGAUCCCGA UU <u>ACAUCAC</u> AA GUAACGAAUGGAUCC
Msw1.4	GGAUCCCGA AU <u>ACAUCAC</u> AG GUAACGAAUGGAUCC
Msw1.5	GGAUCCCGA CG <u>ACAUCAC</u> AG GUAACGAAUGGAUCC
Msw4.1	GGAUCCCGA CU <u>GCAUCAU</u> AG GUAACGAAUGGAUCC
Msw4.2	GGAUCCCGA CC <u>CAUCAU</u> GG GUAACGAAUGGAUCC
Msw5.1	GGAUCCCGA CU <u>GACAUCU</u> AG GUAACGAAUGGAUCC
Msw6.1	GGAUCCCGA CU <u>GACAUCAG</u> AG GUAACGAAUGGAUCC
Msw6.2	GGAUCCCGA CG <u>ACAUCAG</u> AG GUAACGAAUGGAUCC

Table S1: Sequences of the parent MG aptamer, pre-miR let7b, K4 and malaswitch (Msw) variants. Predicted apical loops are underlined.

Candidates	Sequences (5' to 3')
Pre-miR 206	CCAGGCCACAUGCUUCUUUAUAUCCUCAUAG <u>AUAUCUCAGCA</u> CUAUGGAAUGUAAGGAAGUGUGUGUGUUUUGG
K206	CAUAG <u>AUAUCUCAGCA</u> CUAUG
MDMD1	GGAUCCCGA CU <u>AGCUGAGAUAG</u> AG GUAACG AAUGGAUCC
MDMD2	GGAUCCCGA CU <u>AGCUGAGAUGA</u> AG GUAACG AAUGGAUCC
MDMD3	GGAUCCCGA CU <u>ACGUGAGAUGA</u> AG GUAACG AAUGGAUCC
MDMD4	GGAUCCCGA CU <u>ACGAGAGAUAUG</u> AG GUAACG AAUGGAUCC
MDMD5	GGAUCCCGA CU AGCUGAGAAUA AG GUAACG AAUGGAUCC
MDMD6	GGAUCCCGA CU <u>AGCUGAGAAUAG</u> AG GUAACG AAUGGAUCC
MDMD7	GGAUCCCGA CU <u>AGCUGAGUAUA</u> AG GUAACG AAUGGAUCC
MDMD8	GGAUCCCGA CU <u>ACGUGAGAAUA</u> AG GUAACG AAUGGAUCC
MDMD1.1	GGAUCCCGA CU <u>AGCUGAGAUAG</u> AG GUAACG AAUGGAUCC
MDMD1.2	GGAU CCCGA CU <u>AGCUGAGAUAG</u> AG GUAACG AAUGG AUCC

Table S2: Sequences of pre-miR 206, K206 and MDMD malaswitch variants. Predicted apical loops are underlined. For MDMD 1.1 and 1.2 bold letters indicate 2'-O-methyl nucleotides.

Figure S1: Predicted secondary structures (Mfold) of full-length pre-miRNAs (a) pre-miR-let7b (b) pre-miR206. Nucleotides of the apical loops are indicated in green.

Figure S2: Effect of magnesium on the fluorescence of MDMD-MG-K206 complexes. (a) 10mM magnesium, (b) 50mM magnesium. MDMD, MG and K206 concentrations were adjusted to 0.1 μ M, 2 μ M and 2 μ M, respectively. Blue and red bars correspond to measurements in SE buffer without and with aptakiss K206, respectively. (λ_{Exc} = 610 nm, λ_{Em} = 650 nm). Measurements were performed in triplicate and standard error was calculated accordingly.

Figure S3: Specificity of Msw6.1 and MDMD1 malaswitches. 0.1 μ M of both malaswitches were treated with 2 μ M of hairpin loops and miRNA precursors. Blue and red bars correspond to Msw6.1 and MDMD1 malaswitches, respectively. All the measurements were performed in triplicate and standard error was calculated accordingly.

Figure S4: Test of sensing properties of chemically modified MDMD1.2 (see Table S2 for modifications). Fluorimetric titration of MDMD1.2 – pre-miR206 complexes by malachite green (MG) in SE buffer. MDMD1.2 and pre-miR206 were adjusted at 0.1 and 2 μ M, respectively. Measurements were performed in triplicate. ($\lambda_{Exc} = 610 \text{ nm}$, $\lambda_{Em} = 650 \text{ nm}$) Blue and red bars correspond to the signal obtained in absence and presence of pre-miR206, respectively.