Supporting Information for

"Drastic Tuning of the Electronic Structures of Diruthenium Aryl Complexes by

Isoelectronic Axial Ligands"

Adharsh Raghavan, Fang Yuan and Tong Ren*

TABLE OF CONTENTS

1.	Experimental details
2.	Mass spectrometry (ESI-MS)
	Figure S1 . ESI-MS of (NC)Ru ₂ (<i>ap</i>) ₄ (C ₆ H ₄ -4-NMe ₂) (2) S5
	Figure S2 . ESI-MS of (HCC)Ru ₂ (<i>ap</i>) ₄ (C ₆ H ₄ -4-NMe ₂) (3)
	Figure S3 . ESI-MS of (OC)Ru ₂ (<i>ap</i>) ₄ (C ₆ H ₄ -4-NMe ₂) (4)
3.	Crystallographic details
	Table S1. Selected bond metrics for 2–4 S9
	Table S2. Crystallographic details for 2 S10
	Table S3. Crystallographic details for 3 S11
	Table S4. Crystallographic details for 4S12
4.	¹ H NMR spectroscopy
	Figure S4. ¹ H NMR spectrum of 2 at 293 K in CDCl ₃ S12
	Figure S5. ¹ H NMR spectrum of 3 at 293 K in CDCl ₃ S13
	Figure S6. Evans method magnetometry of 4 in C ₆ D ₆ S14
	Figure S7a-b. Variable temperature (VT) NMR spectrum of 3 in CDCl ₃ S15
	Figure S8a-c . VT-NMR chemical shift analyses for $C \equiv C - H$, $N(CH_3)_2$ and $aryl(CH)$
	protons of 3
5.	Electrochemistry
	Figure S9. Cyclic and Differential Pulse Voltammetry of 2–4
	Table S5. Redox potentials for 1–4S18
	Table S6. Voltammetry and IR spectroscopy of Ru ₂ -CO complexes in the
	literature S19
6.	Dissociation of CO from compound 4
	Figure S10. UV-Vis/NIR absorption spectrum S20
	Figure S11. Cyclic Voltammogram of 1 and 4 S20
7.	SQUID magnetometry
	Figure S12 . χ_m and μ_{eff} vs. T, 1 S21
	Figure S13 . χ_m and μ_{eff} vs. T, 4
8.	Computational details
	Figure S14. DFT optimized structure of 4
	Table S7. Bond metrics of the optimized structure 4'S23
	Figure S15. Frontier molecular orbitals of 4'
	Figure S16. Mulliken spin density plot for 4'
	Figure S17. TD-DFT-calculated spectrum of 4' S25
9.	References

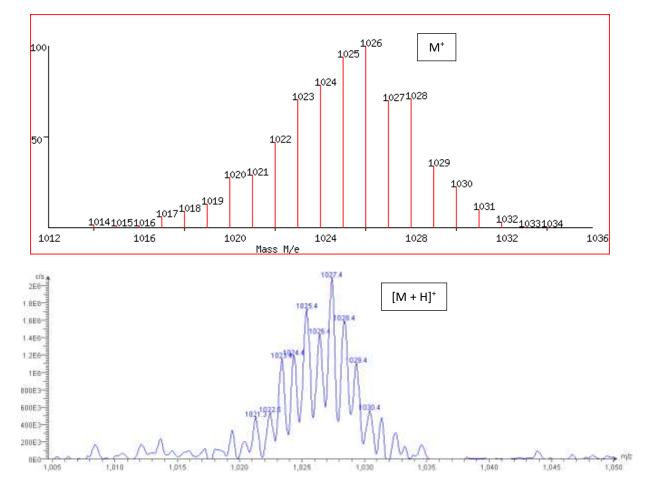
EXPERIMENTAL DETAILS

General. $\operatorname{Ru}_2(ap)_4\operatorname{Cl}^1$ and $\operatorname{Ru}_2(ap)_4(\operatorname{C}_6\operatorname{H}_4-4-\operatorname{NMe}_2)$ (1)² were prepared using literature methods. ^{*n*}BuLi (1.6 M in hexanes) was purchased from Sigma-Aldrich. Bis(trimethylsilyl)-1,3-butadivne was purchased from Alfa Aesar and freshly sublimed before use. Sodium acetylide (18 wt% slurry in xylene, $\rho = 0.89$ g/mL) was purchased from Sigma-Aldrich. KCN and ["Bu₄N][PF₆] were purchased from commercial sources and used as received. Tetrahydrofuran was freshly distilled over sodium/benzophenone prior to use. All reactions were performed under dry N2 atmosphere implementing standard Schlenk techniques where noted. UV-Vis/NIR spectra were obtained with a JASCO V-670 spectrophotometer in THF solutions. ¹H NMR spectra were recorded on a Varian Inova 300 spectrometer operating at 300 MHz. Cyclic and differential pulse voltammograms were recorded in 0.1 M ["Bu₄N][PF₆] solution (THF, Ar or N₂-degassed) on a CHI620A voltammetric analyzer with a glassy carbon working electrode (diameter = 2mm), a Pt-wire auxiliary electrode, and a Ag/AgCl quasi-reference electrode. The concentration of Ru₂-species is always ca. 1.0 mM. The Fc^{+/0} couple was observed at ca. 0.542 \pm 0.113 V (vs Ag/AgCl QRE) at the noted experimental conditions. Electrospray ionization mass spectra (ESI-MS) were collected on an Advion expression^L mass spectrometer with an m/z range of 10 -2000. Elemental analyses were performed by Atlantic Microlab, Inc. DC temperature-dependent magnetization was measured from 2 to 300 K using zero-field-cooling (ZFC) mode on a Quantum Design MPMS-3 SQUID magnetometer. Both compound 1 and 4 were measured under a magnetic field of 1000 Oe with a cooling rate of 2 K/min. The whole magnetic measurement was done under vacuum of a few torr.

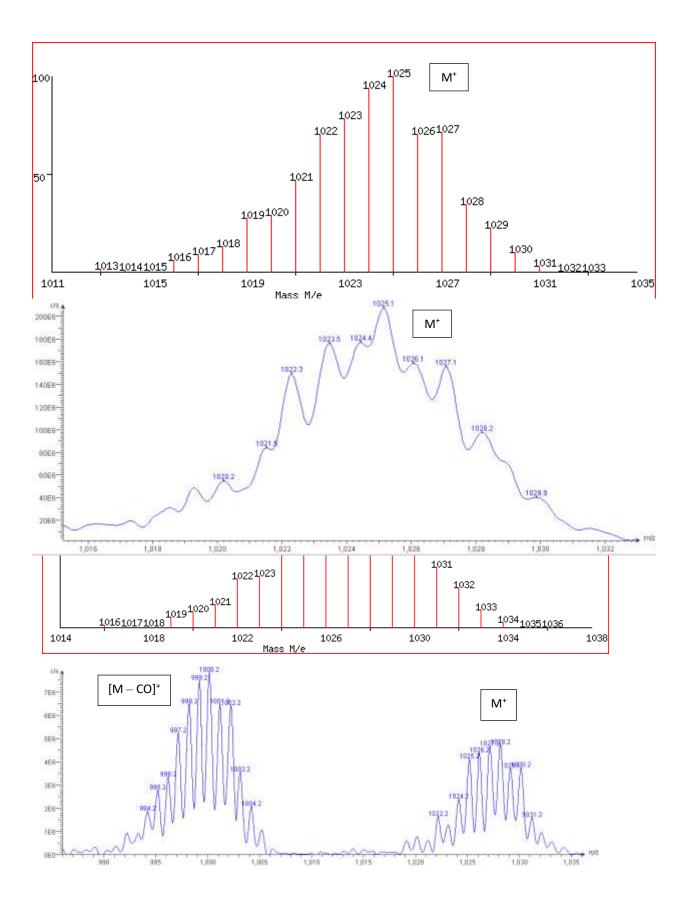
Synthesis of (N=C)Ru₂(*ap*)₄(C₆H₄-4-NMe₂) (2). To a 20 mL solution of 1 (60 mg, 0.06 mmol) in THF was added a 10 mL solution of KCN 20 mg, 0.31 mmol) in MeOH. A rapid color change from black to deep red/purple was observed. O₂ was bubbled through the reaction mixture for 10 minutes during which a distinct color to violet was observed. The solvents were removed in vacuo and the product was extracted from CH₂Cl₂/H₂O. The organic layers were collected, and the product was recrystallized from a 1:20 (v:v) CH₂Cl₂:hexanes mixture at -20° C, as a dark violet microcrystalline solid. Yield: 51 mg, 83%. Crystals suitable for X-ray diffraction analysis were grown by layering hexanes over a concentrated solution of **2** in THF.

Data for **2**. Anal. Found (Calcd.) for $C_{54}H_{50}N_{10}OCl_2Ru_2$ (**2**·CH₂Cl₂·H₂O): C, 57.52 (57.49); H, 4.43 (4.47); N, 12.34 (12.42). ESI-MS (m/z, based on ¹⁰¹Ru): [M+H]⁺ = 1027.4. UV-Vis (in THF) λ , nm, (ϵ , M⁻¹cm⁻¹): 345 (13000), 440 (2500, sh), 550 (4000), 600 (3900), 667 (3500), 740 (2400, sh), 1014 (2900). IR $\bar{\nu}$, cm⁻¹: 2084, v(C=N). Electrochemistry (THF, vs. Fc^{+/0}), E_{1/2}/V, $\Delta E_p/mV$, $i_{forward}/i_{backward}$: -0.11, 64, 1.1; 0.30, 62, 1.2; -0.98, 65, 1.1. ¹H NMR (300 MHz, 293 K, CDCl₃) δ = 3.21 (s, 6H, N(CH₃)₂), 5.60 (br, 4H, *ap*), 6.07 (t, 8H, *ap*, 6.4 Hz), 6.14 (d, 2H, aryl, 6.6 Hz), 6.28 (d, 4H, *ap*, 9.0 Hz), 6.69 (d, 2H, aryl, 6.6 Hz), 6.77-7.21 (m, 16H, *ap*), 7.99 (d, 4H, *ap*, 6.9 Hz).

Synthesis of (HC=C)Ru₂(*ap*)₄(C₆H₄-4-NMe₂) (3). Sodium acetylide slurry (1.1 mL, 18 wt%, ca. 3.7 mmol) was added to a 10 mL THF solution of 1 (60 mg, 0.060 mmol). The color of the solution gradually changed from red-black to blue-black over the course of 24 h under N₂. Aliquots of the reaction mixture were retrieved for TLC analysis. The ratio of the starting material to product (ca. 2:3) did not noticeably change after 24–36 h despite addition of excess sodium acetylide. At this juncture, O₂ was bubbled through the reaction mixture for 30 minutes. The crude reaction mixture was purified by column chromatography. The blue fraction was eluted with triethylamine/EtOAc/hexanes (1/10/70, v/v/v). Yield: 22 mg, 36%. Crystals suitable for X-ray diffraction analysis were grown by layering hexanes over a concentrated solution of **3** in THF.


Data for **3**. Anal. Found (Calcd.) for C₆₂H₇₁N₉O₆Ru₂ (**3**·2THF·4H₂O): C, 59.78 (60.03); H, 5.45 (5.77); N, 9.90 (10.16). ESI-MS (m/z, based on ¹⁰¹Ru): $[M^+] = 1024.2$. UV-Vis (in THF) λ , nm, (ε , M⁻¹cm⁻¹): 345 (25000, sh), 450 (5600, sh), 570 (7000, sh), 641 (9700), 740 (5800, sh), 1060 (3600). IR $\bar{\nu}$, cm⁻¹: 1947, v(C=C); 3280, v(C=C-H). Electrochemistry (THF, vs. Fc^{+/0}), E_{1/2}/V, $\Delta E_p/mV$, i_{forward}/i_{backward}: -0.21, 66, 1.1; 0.21, 67, 1.2; -1.2, 71, 1.2; -1.53, 188, 1.4. ¹H NMR (300 MHz, 293 K, CDCl₃) $\delta = -10.74$ (s, 1H, C=C*H*), 1.39 (d, 2H, aryl, 8.4 Hz), 2.99 (t, 4H, *ap*, 6.3 Hz), 3.90 (d, 4H, *ap*, 8.8 Hz), 5.34 (br, 4H, *ap*), 5.66 (s, 6H, N(CH₃)₂), 5.92 (br, 4H, *ap*), 6.86 (t, 4H, *ap*, 6.9 Hz), 6.96 (d, 2H, aryl, 8.4 Hz), 7.49 (br, 8H, *ap*), 8.00 (t, 4H, *ap*, 7.5 Hz), 3.90 (d, 4H, *ap*, 6.9 Hz).

Synthesis of $(O=C)Ru_2(ap)_4(C_6H_4-4-NMe_2)$ (4). Carbon monoxide gas was bubbled through a 20 mL THF solution of 1 (50 mg, mmol) in a Schlenk tube. An immediate colour change from red-black to deep red was observed. Solvent was evaporated and the red solid thus obtained was dried in vacuo. Prior to collecting the solid for analysis, the tube was re-pressurized with $CO_{(g)}$. Yield: 51 mg, 99 %. Crystals suitable for X-ray diffraction analysis were grown in a tube sealed with a slight pressure of $CO_{(g)}$ by layering hexanes over a concentrated solution of 4 in a 1:1 mixture of benzene and toluene.


Data for **4**. Anal. Found (Calcd.) for $C_{53}H_{52}N_9O_4Ru_2$ (**4**·3H₂O): C, 58.97 (58.88); H, 4.46 (4.85); N, 11.23 (11.66). Loss of the labile CO is possible during shipping and handling of the EA sample. ESI-MS (m/z, based on ¹⁰¹Ru): [M]⁺ = 1028.2, [M–CO]⁺ = 1000.2. UV-Vis (in THF) λ , nm, (ϵ , M⁻¹cm⁻¹): 336 (33000, sh), 486 (6300), 815 (5700), 1010 (2800, sh). IR $\bar{\nu}$, cm⁻¹: 1950, ν (C=O). μ_{eff} (25°C) = 1.9 B.M. Electrochemistry (THF, vs. Fc^{+/0}), E_{1/2}/V, $\Delta E_p/mV$, i_{forward}/i_{backward}: -0.34, 63, 1.03; 0.18, 57, 1.04; -1.39, 59, 1.00.

Attempted reactions of CO with $[Ru_2(ap)_4]X$ (X = Cl, CN, C=CR, N₃): The Ru₂ starting materials were prepared via established literature procedures through metathesis reactions of Ru₂(ap)₄Cl with KCN,³ MC=CR (M = Li, R = Ph, C₆H₄-4-NMe₂, M = Na, R = H)^{4,5} and NaN₃,⁶ respectively. CO was bubbled through THF solutions of $[Ru_2(ap)_4]X$ for ca. 1 min at room temperature. When no color change was observed, the reaction was attempted at an elevated

temperate (50–60 °C) for ca. 1 min. No color change was observed, and ESI-MS of the reaction mixtures consistently showed no new product peaks.

MASS SPECTROMETRY (ESI-MS)

S6

CRYSTALLOGRAPHIC DETAILS

Single-crystal X-ray diffraction data for compounds 2–4 at 150 K were collected on a Bruker AXS D8 Quest CMOS diffractometer using Mo-K α radiation ($\lambda = 0.71073$ Å). Data was collected and processed using APEX3, and the structures were solved using SHELXT suite of programs and refined to convergence on F^2 and against all independent reflections by full-matrix least-squares using SHELXL.⁷⁻⁹ All non-hydrogen atoms were refined anisotropically and hydrogen atoms were geometrically placed and allowed to ride on their parent atoms.

CCDC 2000255-2000257 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via <u>www.ccdc.cam.ac.uk/data_request/cif</u>, or by emailing <u>data_request@ccdc.cam.ac.uk</u>, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

	2, CN	3, CCH	4, CO
Ru1–Ru2	2.4857(7)	2.4887(5)	2.5060(3)
Ru1–C1	2.077(7)	2.058(4)	2.053(2)
Ru2-C53	2.021(7)	2.005(4)	1.877(2)
C53-N10/C54/O1	1.14(1)	1.181(6)	1.146(2)
Ru2-Ru1-C1	157.0(2)	156.02(9)	155.61(6)
Ru1-Ru2-C53	166.9(2)	166.45(9)	169.50(7)
Ru1–N1	2.149(5)	2.132(2)	2.157(2)
Ru1–N3	2.138(5)	2.156(2)	2.040(1)
Ru1–N5	2.038(4)	2.038(2)	2.068(2)
Ru1–N7	2.037(5)	2.018(3)	2.166(1)
Ru2–N2	1.974(5)	2.007(2)	2.028(2)
Ru2–N4	1.988(5)	1.978(3)	2.136(2)
Ru2-N6	2.068(5)	2.080(2)	2.069(2)
Ru2–N8	2.165(4)	2.164(2)	2.022(1)

Table S1. Selected Bond Lengths (Å) and Angles (deg) for Compounds 2–4.

	AR_3_21_0m (CCDC 2000255)
Crystal data	
Chemical formula	$C_{61}H_{62}N_{10}O_2Ru_2$
M _r	1169.34
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	150
<i>a</i> , <i>b</i> , <i>c</i> (Å)	19.0728 (8), 16.6306 (7), 18.7099 (7)
β (°)	117.995 (2)
$V(Å^3)$	5240.2 (4)
Ζ	4
Radiation type	Cu Kα
μ (mm ⁻¹)	5.10
Crystal size (mm)	0.2 imes 0.1 imes 0.05
Data collection	
Diffractometer	Bruker AXS D8 Quest CMOS diffractometer
Absorption correction	Multi-scan SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D. (2015). J. Appl. Cryst. 48 3-10.
T_{\min}, T_{\max}	0.477, 0.754
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	35321, 10759, 7585
R _{int}	0.091
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.640
Refinement	
$R[F^2 > 2\sigma(F^2)],$ $wR(F^2), S$	0.061, 0.174, 1.07
No. of reflections	10759
No. of parameters	678
H-atom treatment	H-atom parameters constrained
$\Delta \rangle_{\rm max}, \Delta \rangle_{\rm min} \ (e \ {\rm \AA}^{-3})$	1.39, -1.37

Table S2. Crystallographic details for (NC)Ru₂(ap)₄(C₆H₄-4-NMe₂) (2)

	AR_3_173_0m (CCDC 2000256)
Crystal data	
Chemical formula	$C_{62}H_{63}N_9O_2Ru_2$
<i>M</i> _r	1168.35
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	150
<i>a</i> , <i>b</i> , <i>c</i> (Å)	11.3227 (5), 14.1697 (6), 17.6704 (7)
α, β, γ (°)	109.063 (2), 102.115 (3), 92.949 (3)
$V(\text{\AA}^3)$	2597.70 (19)
Ζ	2
Radiation type	Cu Kα
μ (mm ⁻¹)	5.14
Crystal size (mm)	$0.20 \times 0.15 \times 0.14$
Data collection	
Diffractometer	Bruker AXS D8 Quest CMOS diffractometer
Absorption correction	Multi-scan SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D. (2015). J. Appl. Cryst. 48 3-10.
T_{\min}, T_{\max}	0.530, 0.753
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	29336, 9759, 8521
R _{int}	0.057
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.610
Refinement	
$R[F^2 > 2\sigma(F^2)],$ $wR(F^2), S$	0.040, 0.114, 1.01
No. of reflections	9759
No. of parameters	724
No. of restraints	216
H-atom treatment	H-atom parameters constrained
$\Delta \rangle_{\rm max}, \Delta \rangle_{\rm min} ({\rm e} ~{\rm \AA}^{-3})$	1.24, -1.30

	AR_3_99_0m (CCDC 2000257)
Crystal data	
Chemical formula	C _{59,39} H _{52,77} N ₉ ORu ₂
M _r	1110.66
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	150
a, b, c (Å)	12.5822 (9), 12.8242 (9), 17.5440 (11)
α, β, γ (°)	71.387 (3), 73.114 (2), 75.340 (3)
$V(Å^3)$	2526.7 (3)
Ζ	2
Radiation type	Μο Κα
μ (mm ⁻¹)	0.65
Crystal size (mm)	0.70 imes 0.30 imes 0.30
Data collection	
Diffractometer	Bruker AXS D8 Quest CMOS diffractometer
Absorption correction	Multi-scan SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10
T_{\min}, T_{\max}	0.674, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	83101, 16824, 13493
R _{int}	0.036
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.737
Refinement	
$R[F^2 > 2\sigma(F^2)],$ $wR(F^2), S$	0.034, 0.075, 1.08
No. of reflections	16824
No. of parameters	707
No. of restraints	204
H-atom treatment	H-atom parameters constrained
$\Delta \rangle_{\rm max}, \Delta \rangle_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	2.81, -1.13

Table S4. Crystallographic details for (OC)Ru₂(ap)₄(C₆H₄-4-NMe₂) (4)

¹H NMR SPECTROSCOPY

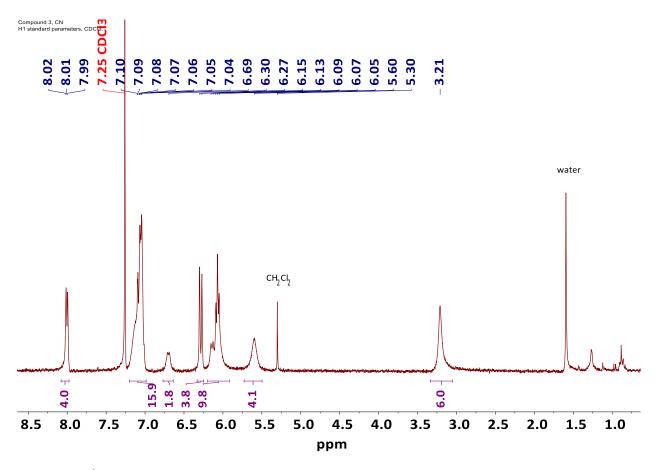


Figure S4. ¹H NMR spectrum of 2 in CDCl₃ at 293 K.

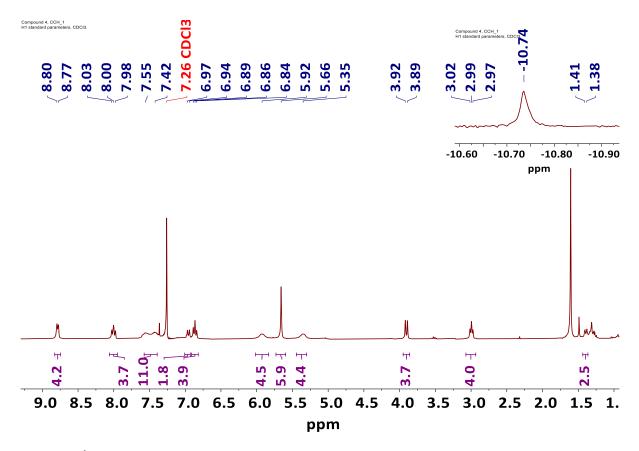
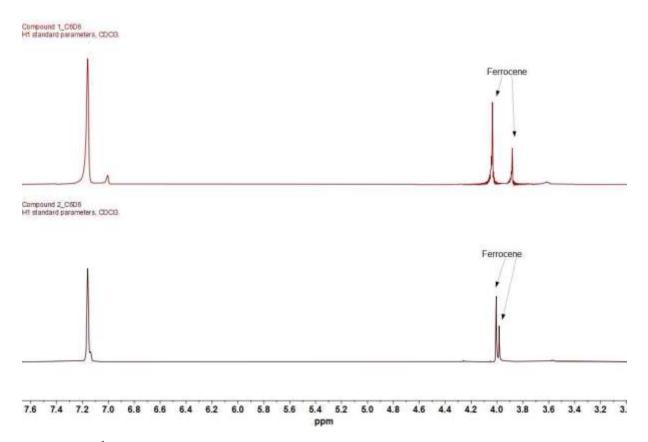
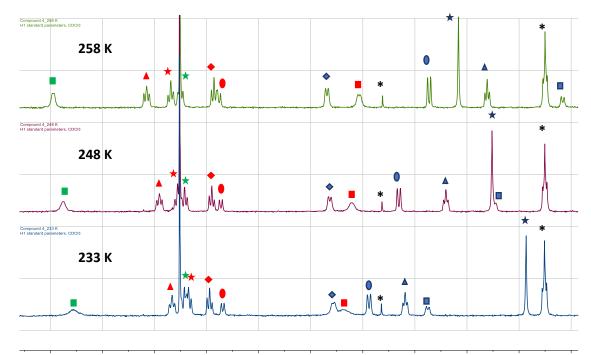
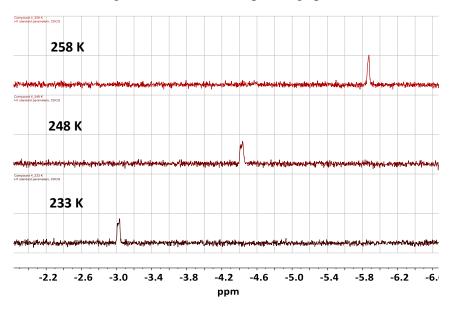


Figure S5. ¹H NMR spectrum of 3 in CDCl₃ at 293 K.




Figure S6. ¹H NMR spectra of 1 (top) and 4 (bottom) in C_6D_6 at 293 K, containing capillary inserts for Evans method¹⁰ magnetometry.

$$\chi_m = \frac{3000 \times \Delta f \times 300}{F \times 4\pi \times [Ru_2]}$$


(where F = frequency of the spectrometer in Hz, Δf = difference in chemical shifts of Fc peak in ppm, [Ru₂] = concentration of the diruthenium species in mol.L⁻¹)

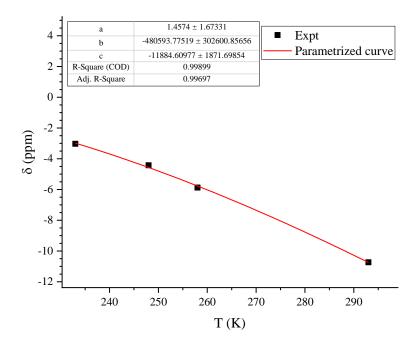
Using the above equation and applying appropriate diamagnetic corrections, $^{11} \mu_{eff}$ for compound 1 and 4 were calculated:

 $\mu_{\text{eff},1} = 4.1 \ \mu_B; \ \mu_{\text{eff},4} = 1.9 \ \mu_B.$

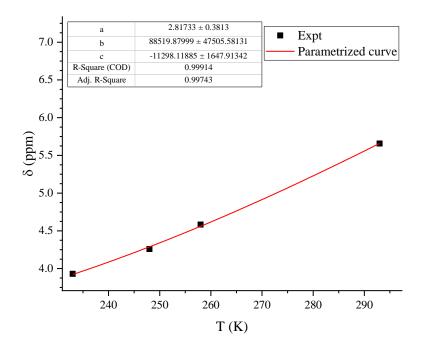
Figure S7a. H NMR spectrum of **3** in CDCl₃ at 258,248 and 233 K. Black asterisks represent solvent impurity peaks (THF and CH₂Cl₂). Sets of equivalent peaks are denoted by matching shapes and colors. See Figure S5 for the corresponding spectrum at 293 K.

Figure S7b. ¹H NMR spectrum of **3** in CDCl₃ at 258, 248 and 233 K, shown here are the peaks corresponding to the acetylide (C \equiv C–**H**) proton.

It is clear from the above VT-NMR spectra that the chemical shifts for compound **3** are temperature-dependent. As the temperature is decreased, all the peaks trend toward their diamagnetic reference values. We thus hypothesize that compound **3** exists in a singlet ground state $(\lim_{T\to 0}(S) = 0)$ but has a thermally accessible low-lying triplet state (S = 1). This can be modelled as the result of a Boltzmann distribution between the states according to equation EQ1.¹²


$$\delta(T) = a + \left(\frac{1}{T}\right) \frac{b \cdot e^{\frac{C}{RT}}}{1 + 3e^{\frac{C}{RT}}} \dots EQ1$$

 $a = \delta_0$, the diamagnetic reference value for the chemical shift of the proton considered,


b = a parameter that is related to the Hyperfine coupling constant,

 $c = \Delta E_{s-t} = E_s - E_t$, the energy difference between the singlet ground state and the triplet excited state.

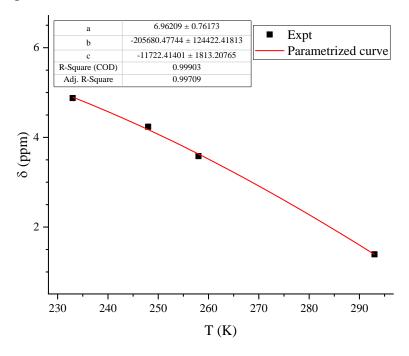

The parametrized equation (EQ1) was used to analyze the chemical shifts of the C=C–H, N(CH₃)₂ and axial aryl(CH) protons (Figures S8a–c). Accordingly, the singlet-triplet energy gap was found to be $|2J| = 972.3 \pm 146.9$ cm⁻¹ (2.78 ± 0.42 kcal/mol).

Figure S8a. Experimental VT-NMR chemical shift data for $\delta(C=C-H)$ modelled according to the parametrized equation EQ1.

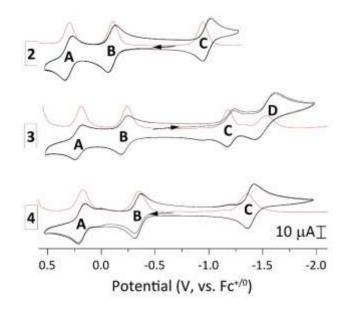


Figure S8b. Experimental VT-NMR chemical shift data for $\delta(N-(CH_3)_2)$ modelled according to the parametrized equation EQ1.

Figure S8c. Experimental VT-NMR chemical shift data for $\delta(Aryl(CH))$ modelled according to the parametrized equation EQ1.

ELECTROCHEMISTRY

Figure S9. Cyclic (black) and differential pulse (red) voltammograms of compounds 2–4 recorded in 0.2 M TBAPF₆ THF. [Ru₂] is always ca. 1.0 mM.

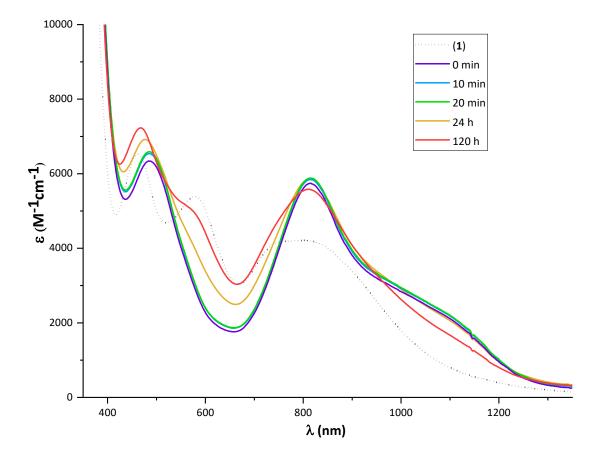

Y	$E_{1/2}(A)$	$E_{1/2}(\mathbf{B})$	E _{1/2} (C)	E _{1/2} (D)
- (1)	0.12	$-0.27 (\text{Ru}_2^{6+/5+})$	$-1.62 (\text{Ru}_2^{5+/4+})$	-
CN (2)	0.30	$-0.11 (\text{Ru}_2^{7+/6+})$	$-0.98 (\text{Ru}_2^{6+/5+})$	-
C≡CH (3)	0.21	$-0.21 (\text{Ru}_2^{7+/6+})$	$-1.2 (\text{Ru}_2^{6+/5+})$	-1.53
CO (4)	0.18	$-0.34 (\text{Ru}_2^{6+/5+})$	$-1.39 (\text{Ru}_2^{5+/4+})$	-

Table S5. Redox potentials (V, versus $Fc^{+/0}$) for (Y)[Ru₂(*ap*)₄](C₆H₄-4-NMe₂)

	Oxidation state	$E_{1/2}$ (V vs. $Fc^{+/0}$)		ν _{CO} ,	
Compound		Ru2 ^{6+/5+}	Ru2 ^{5+/4+}	cm^{-1}	Reference
[Ru ₂ (dpb) ₄ (CO)] ⁺	Ru2 ⁵⁺	0.48	-0.82	2013	13
$[Ru_2(DPhF)_4(CO)]^+$		-	-	2019	14
[Ru ₂ (DPhF) ₃ (OAc)(CO)] ⁺		0.31	-0.59	2016	15
[(CO)Ru ₂ (ap) ₄ Ar]		-0.34	-1.39	1950	This work
Ru ₂ (dpb) ₄ (CO)	Ru2 ⁴⁺ Ru2 ³⁺	0.59	-0.37	1924	13
Ru ₂ (DPhF) ₄ (CO)		-	-0.20	1929	14
$[Ru_2(dpb)_4(CO)]^-$		_	-	1834	13
$[Ru_2(DPhF)_4(CO)]^-$		-	-	1840	14

Table S6. Voltammetry and IR spectroscopy of Ru_2 –CO complexes in the literature

DISSOCIATION OF CO FROM (4)

Figure S10. UV-Vis/NIR spectrum of **1** (black dotted line), **4** freshly prepared by exposure of **1** to CO, and slow dissociation of CO upon exposure to air for varying lengths of time.

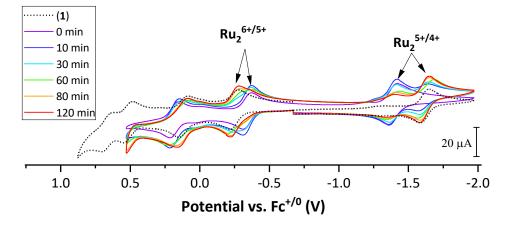


Figure S11. Cyclic voltammogram of compound 1 under N_2 (black dotted line), 4 freshly prepared by purging the electrochemical cell with CO (violet line, 0 min), and subsequent scans recorded after the electrochemical cell was purged with N_2 for varying lengths of time.

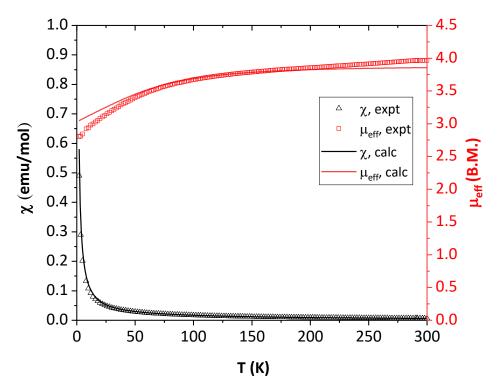


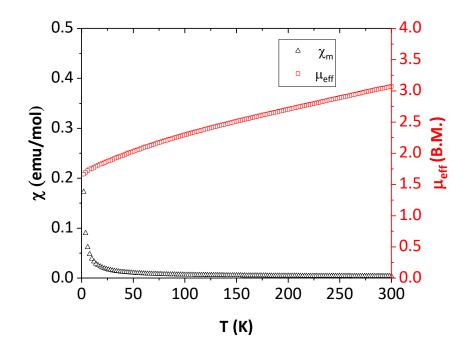
Figure S12. SQUID magnetometry data for 1 from 2 K - 300 K. Open symbols denote experimental values; solid lines denote simulated curves.

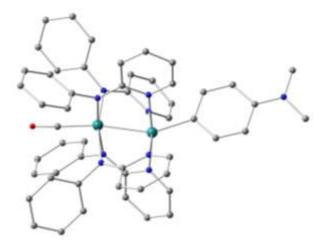
Compound 1, which has a quartet ground state exhibits a temperature-dependent magnetic susceptibility varying over the range of 2 K - 300 K that can be fit according to the following equations:

$$\chi_{\parallel} = \frac{N_A g_{\parallel}^2 \beta^2}{k_B T} \cdot \left\{ \frac{1 + 9e^{-\frac{D}{k_B T}}}{4\left(1 + e^{-\frac{D}{k_B T}}\right)} \right\} \dots EQ2$$
$$\chi_{\perp} = \frac{N_A g_{\perp}^2 \beta^2}{k_B T} \cdot \left\{ \frac{4 + \left(\frac{6k_B T}{D}\right)\left(1 - e^{-\frac{D}{k_B T}}\right)}{4\left(1 + e^{-\frac{D}{k_B T}}\right)} \right\} \dots EQ3$$
$$\chi_{total} = \frac{1}{3} (\chi_{\parallel} + 2, \chi_{\perp}) \dots EQ4$$

Where N_A = Avogadro's number, k_B = Boltzmann constant, T = temperature, D = Zero Field Splitting (ZFS) parameter, β = Bohr Magneton.

The curve in Figure S12 was simulated for $D = 152 \text{ cm}^{-1}$, $g_{\parallel} = 1.9500$, $g_{\perp} = 2.0265$.




Figure S13. SQUID magnetometry data for 4 from 2 K – 300 K.

For a doublet ground state, the value of χT , and hence μ_{eff} , is expected to be invariant of temperature. However, the lability of CO and the associated change in spin-state complicates the issue. Ideally, the SQUID sample holder would be hermetically sealed under a magnetically inert atmosphere. But in the event of leaks wherein the compound gets inadvertently exposed to the low-pressure of the vacuum that is operative during measurements, CO can dissociate from the complex. All attempts to fit the data as a physical mixture of compound **4** (S = $\frac{1}{2}$) with compound **1** (S = $\frac{3}{2}$) as an impurity failed.

Upon closer inspection, it can be seen that with CO as a labile axial ligand, this system closely resembles $[Ru_2(DPhF)_3(OAc)(H_2O)]BF_4$,¹⁶ which has labile water molecules at the axial positions. This compound displays a very similar magnetic behavior between 2 K – 300 K, which has been explained via a quantum mechanical spin admixture that takes place through spin-orbit coupling. This phenomenon could be operative in the case of compound **4** as well.

COMPUTATIONAL DETAILS

All Density Functional Theory (DFT) calculations were carried out using Gaussian16.¹⁷ Geometry optimizations of **4** based on the corresponding crystal structure were done using the spin-unrestricted formalism with the B3LYP¹⁸⁻²¹ and BP86²² functionals. Minima were confirmed through frequency analysis. The output from B3LYP was found to be closer to experimentally determined metrical parameters. Table S6 lists the comparison between experimental and DFT-optimized structures (**4** and **4'**, respectively). Time-dependent DFT calculations (TD-DFT) were also performed on the optimized structure **4'** using both the B3LYP and BP86 functionals; BP86 gave large deviations from the experimental UV-Vis spectrum compared to B3LYP. All subsequent analyses, therefore, were performed with the B3LYP functional, basis sets def2-TZVP (with ECP) for Ru atoms and def2-SVP for C, H, O and N atoms,^{23,24} and the polarizable continuum solvent model (CPCM) for tetrahydrofuran.

Figure S14. DFT-optimized structure (4') derived from the single crystal X-ray diffraction data of compound 4.

	4 (XRD)	4' (DFT, B3LYP)	4' (DFT, BP86)
Ru1–Ru2	2.5060(3)	2.52113	2.54806
Ru1–C1	2.053(2)	2.02168	2.03964
Ru2-C53	1.877(2)	1.85911	1.84910
C53-O1	1.146(2)	1.15457	1.17423
Ru2-Ru1-C1	155.61(6)	150.41711	151.40244
Ru1-Ru2-C53	169.50(7)	170.60788	169.55364

Table S7. Selected experimental and DFT-optimized metrical parameters of 4 and 4'.

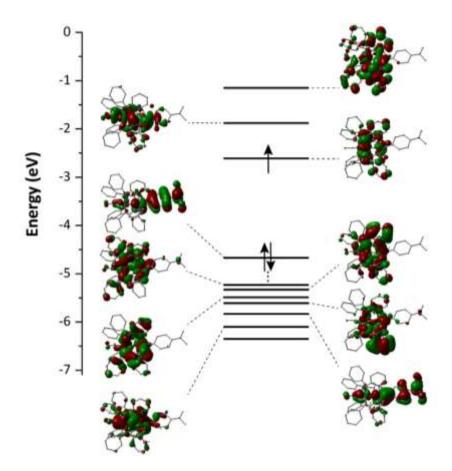
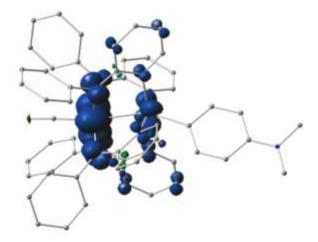
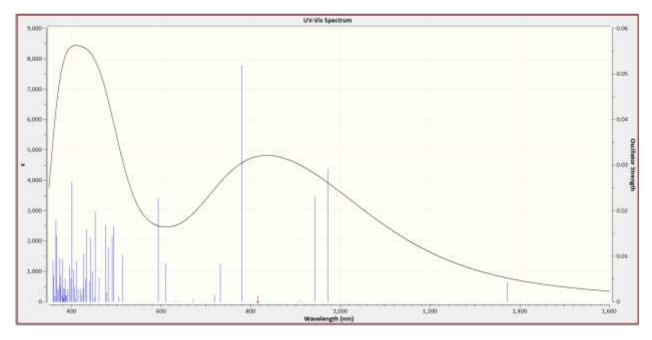




Figure S15. Frontier Molecular Orbitals of 4' (energies in eV) represented at isovalue = |0.02|

Figure S16. Net unpaired electron density calculated for **4'**, represented at |isovalue| = 0.003. The unpaired electron is predominantly localized on the δ^* orbital, per the electronic configuration described in the text (also see Figure S15, SOMO)

Figure S17. TD-DFT spectrum of DFT-optimized **4'** (compare with experimental spectrum in Figure S10)

REFERENCES:

- (1) Zou, G.; Alvarez, J. C.; Ren, T. Ru-s-alkynyl compounds of tetraanilinopyridinatodiruthenium(II,III) core: Synthesis and structural characterization. *J. Organomet. Chem.* **2000**, *596*, 152-158.
- (2) Raghavan, A.; Mash, B. L.; Ren, T. Forging Ru-C sp 2 Bonds in Paddlewheel Complexes Using the Lithium-Halogen Exchange Reaction. *Inorg. Chem.* **2019**, *58*, 2618-2626.
- (3) Bear, J. L.; Chen, W. Z.; Han, B.; Huang, S.; Wang, L. L.; Thuriere, A.; Van Caemelbecke, E.; Kadish, K. M.; Ren, T. Cyanide adducts on the diruthenium core of $[Ru_2(L)_4]^+$ (L = ap, CH₃ap, Fap, or F₃ap). Electronic properties and binding modes of the bridging ligand. *Inorg. Chem.* **2003**, 42, 6230-6240.
- (4) Chakravarty, A. R.; Cotton, F. A.; Tocher, D. A. Syntheses, molecular structures, and properties of two polar diruthenium(II,III) complexes of 2-hydroxypyridine and 2-anilinopyridine. *Inorg. Chem.* **1985**, *24*, 172-177.
- (5) Xu, G.; Ren, T. Ru-s-butadiynyl complexes of the tetraanilinopyridinatodiruthenium core: Formation of a bis-adduct. *Organometallics* **2001**, *20*, 2400-2404.
- (6) Chen, W. Z.; Silva, V. D.; Lin, C.; Abellard, J.; Marcus, D. M.; Ren, T. Azidotetrakis(diarylformamidinate)diruthenium(II,III) Compounds: Synthesis, Molecular Structures and Voltammetric Properties; Linear Free Energy Relationships in Dinuclear Compounds VII. J. Cluster Sci. 2005, 16, 151-165.
- (7) Sheldrick, G. M. In Acta Cryst, 2008; Vol. A64; pp 112-112.
- (8) Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. C 2015, 71, 3-8.
- (9) Sheldrick, G. M. SHELXL 2016; University of Göttingen, Germany. 2016.
- (10) Evans, D. F. The Determination of the Pararnagnetic Susceptibility. J. Chem. Soc. **1959**, 2003-2005.
- (11) Bain, G. A.; Berry, J. F. Diamagnetic corrections and Pascal's constants. *J. Chem. Educ.* **2008**, *85*, 532-536.

- (12) Guennic, B. L.; Floyd, T.; Galan, B. R.; Autschbach, J.; Keister, J. B. Paramagnetic effects on the NMR spectra of "diamagnetic" ruthenium (bis-phosphine)(bis-semiquinone) complexes. *Inorg. Chem.* 2009, 48, 5504-5511.
- (13) Manowong, M.; Han, B.; McAloon, T. R.; Shao, J.; Guzei, I. A.; Ngubane, S.; Van Caemelbecke, E.; Bear, J. L.; Kadish, K. M. Effect of axial ligands on the spectroscopic and electrochemical properties of diruthenium compounds. *Inorg. Chem.* **2014**, *53*, 7416-7428.
- (14) Kadish, K. M.; Han, B.; Shao, J.; Ou, Z.; Bear, J. L. Synthesis and characterization of diruthenium complexes in low oxidation states. Formation of mono- and bis-CO adducts. *Inorg. Chem.* 2001, 40, 6848-6851.
- (15) Barral, M. C.; Herrero, S.; Jimenez-Aparicio, R.; Torres, M. R.; Urbanos, F. A. Carbonyl and nitrosyl diruthenium compounds: Crystal structure of [Ru2(O2CMe)(DPhF)3(CO)]BF4 Â. CH2Cl2 and its isomorphous nitrosyl analogue. *J. Organomet. Chem.* **2008**, *693*, 1597-1604.
- (16) Barral, M. C.; Herrero, S.; Jimenez-Aparicio, R.; Torres, M. R.; Urbanos, F. A. A spin-admixed ruthenium complex. *Angew. Chem. Int. Ed.* **2005**, *44*, 305-307.
- (17) *Gaussian 16 Rev. A.03*; Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J.: Wallingford, CT, 2016.
- (18) Vosko, S. H.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. *Can. J. Phys.* **1980**, *58*, 1200-1211.
- (19) Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. *Phys. Rev. A* **1988**, *38*, 3098-3100.
- (20) Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. **1993**, 98, 5648-5652.
- (21) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623-11627.
- (22) Perdew, J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. *Phys. Rev. B* **1986**, *33*, 8822-24.
- (23) Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H. Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. *Theor. Chim. Acta* **1990**, *77*, 123-141.
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. *Phys. Chem. Chem. Phys.* 2005, 7, 3297-3305.