Supporting Information

Water-Dispersible Fluorescent Carbon Dots as Bioimaging Agents and Probes for Hg²⁺ and Cu²⁺ ions

Madhuri Bhatt^{a,b}, Shreya Bhatt^{a,b}, Gaurav Vyas^{a,b}, Ishan H. Raval^a, Soumya Haldar^{a,b} and Parimal Paul^{a,b}*

^{*a*}Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, India. ^{*b*}Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India. Corresponding author: E-mail: ppaul@csmcri.res.in (P. Paul),

Figure No.	Figure Caption			
		No.		
Figure S1	AFM image of N-CD, insert: height along Z-axis.			
Figure S2	Fluorescence spectral change of N-CD in presence NaCl (0.5 to 5.0 %)			
Figure S3	Fluorescence spectral change of N-CD at different pH (pH 1-12) in aqueous media.			
Figure S4	Fluorescence spectral change of N-CD in presence of various solvents.			
Figure S5	Bar diagram showing change in fluorescence intensity of N-CD at 415 nm upon addition of various metal ions (20 μ M)			
Figure S6	Fluorescence spectral change of N-CD in presence of Cu ²⁺ and Hg ²⁺ and after addition of ATP into the solution of N-CD-M ²⁺ (Metal:ATP molar ratio is 1:2).			
Figure S7	Plot of fluorescence quenching efficiency of N-CD as a function of time with different concentration of Hg ²⁺ .	S10		

Table of Content

Figure S8	Plot of fluorescence quenching efficiency of N-CD as a function of time	S11
	with different concentration of Cu ²⁺ .	
Figure S9	The change in quenching intensity $[(F_0/F)-1]$ of N-CD as a function of the	S12
	concentration of Hg ²⁺ .	
Figure S10	(a) Fluorescence titration of N-CD upon addition of incremental amount	
	of Cu^{2+} (0.10 μ M to 0.18 mM), (b) the change in quenching intensity	
	$[(F_0/F)-1]$ as a function of the concentration of Cu ²⁺ and (c) its linear	
	portion for calculation of quenching constant and to determine	
	concentration of metal ion in unknown solution.	
Figure S11	Bar diagram of competitive selectivity of N-CD towards $Hg^{2+}(25 \ \mu M)$.	S14
	Black bar represents the fluorescence intensity at 415 nm of N-CD. The	
	Purple bar represents the fluorescence intensity at 415 nm of N-CD in the	
	presence of Hg ²⁺ . The green bars represent the fluorescence intensity at	
	415 nm upon the subsequent addition of different cations (50 μ M).	
Figure S12	Bar diagram of competitive selectivity of N-CD towards Cu ²⁺ (25uM).	S15
	Black bar represents the fluorescence intensity at 415 nm of N-CD. Blue	
	bar represents the fluorescence intensity at 415 nm of N-CD in the	
	presence of Cu ²⁺ . The purple bars represent the fluorescence intensity at	
	415 nm upon the subsequent addition of different cations (50 μ M).	
Figure S13	(a) Emission decay of N-CD in presence of Cu ²⁺ , experimental (dotted	S16
	curve) and the fitted curve (full line) in aqueous medium and (b) Emission	
	decay of N-CD in presence of Hg ²⁺ , experimental (dotted curve) and the	
	fitted curve (full line) in aqueous medium.	
Figure S14	Ratios of emission life-time of N-CD with different concentration of (a)	
	Cu^{2+} ion and (b) Hg^{2+} ion.	
Figure S15	UV-vis spectra of N-CD, Hg ²⁺ and Cu ²⁺ solutions with perchlorate anion	
	(50 μ M) and N-CD upon addition of Hg ²⁺ and Cu ²⁺ solutions.	
Figure S16	Plot for estimation of Hg ²⁺ ion in real samples using the linear segment of	S19
	the standard curve obtained from fluorescence titration of N-CD using	
	standard solutions of Hg ²⁺ .	

Figure S17	igure S17 Plot for estimation of Cu ²⁺ ion in real samples using the linear segment			
	the standard curve obtained from fluorescence titration of N-CD using			
	standard solutions of Cu ²⁺ .			
Figure S18	Paper strips coated with N-CD, (a) dipped into aqueous solution of	S21		
	different metal ions (5 μ M) for five minutes and dried in air (colour			
	change was noted for Cu^{2+} and Hg^{2+}) and (b) a pinch of solid $HgCl_2$ and			
	CuCl ₂ were kept on the strips and were removed after five minutes			
	(colour change of the spot was noted).			
Figure S19	Mortality percentage (%) calculation for N-CD, N-CD-Cu ²⁺ and N-CD-	S22		
	Hg^{2+} .			
Table S1	Real sample analysis for Hg ²⁺ and Cu ²⁺ in water using N-CD and ICP-	S23		
	MS.			

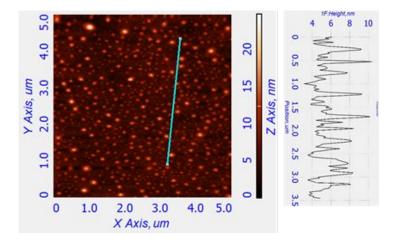


Figure S1. AFM image of N-CD, insert: height along Z-axis.

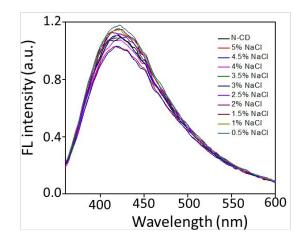


Figure S2. Fluorescence spectral change of N-CD in presence NaCl (0.5 to 5.0 %).

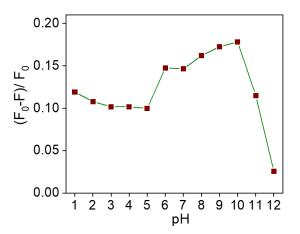


Figure S3. Fluorescence spectral change of N-CD at different pH (pH 1-12) in aqueous media.

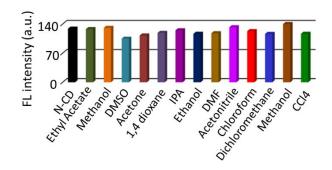


Figure S4. Fluorescence intensity of N-CD in various solvents.

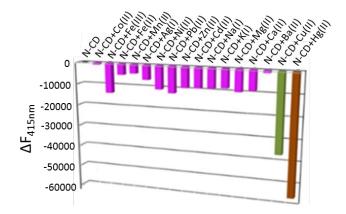


Figure S5. Bar diagram showing change in fluorescence intensity of N-CD at 415 nm upon addition of various metal ions (20 μ M).

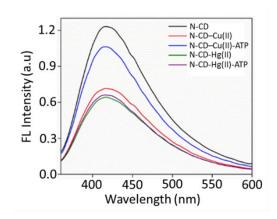


Figure S6. Fluorescence spectral change of N-CD in presence of Cu^{2+} and Hg^{2+} and after addition of ATP into the solution of N-CD-M²⁺ (Metal: ATP molar ratio is 1:2).

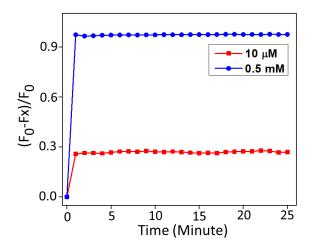


Figure S7. Plot of fluorescence quenching efficiency of N-CD as a function of time with different concentration of Hg^{2+} .

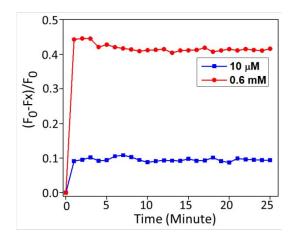


Figure S8. Plot of fluorescence quenching efficiency of N-CD as a function of time with different concentration of Cu^{2+} .

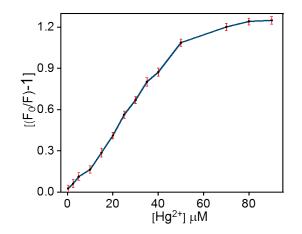


Figure S9. The change in quenching intensity $[(F_0/F)-I]$ of N-CD as a function of the concentration of Hg²⁺.

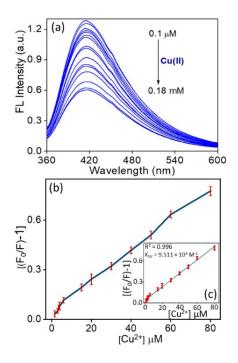


Figure S10. (a) Fluorescence titration of N-CD upon addition of incremental amount of Cu^{2+} (0.10 μ M to 0.18 mM), (b) the change in quenching intensity [(F_0/F) -1] as a function of the concentration of Cu^{2+} and (c) its linear portion for calculation of quenching constant and to determine concentration of metal ion in unknown solution.

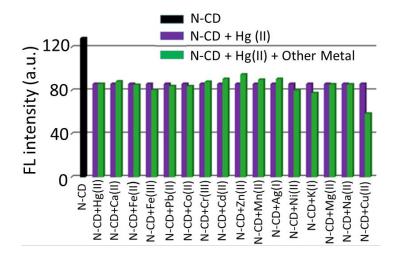


Figure S11. Bar diagram of competitive selectivity of N-CD towards $Hg^{2+}(25 \ \mu M)$. Black bar represents the fluorescence intensity at 415 nm of N-CD. The Purple bar represents the fluorescence intensity at 415 nm of N-CD in the presence of Hg^{2+} . The green bars represent the fluorescence intensity at 415 nm upon the subsequent addition of different cations (50 μM).

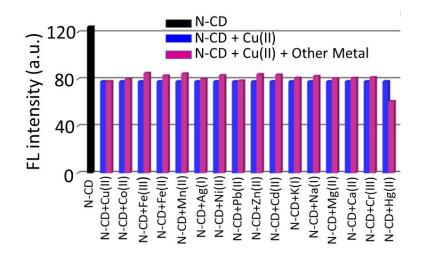


Figure S12. Bar diagram of competitive selectivity of N-CD towards Cu^{2+} (25uM). Black bar represents the fluorescence intensity at 415 nm of N-CD. Blue bar represents the fluorescence intensity at 415 nm of N-CD in the presence of Cu^{2+} . The purple bars represent the fluorescence intensity at 415 nm upon the subsequent addition of different cations (50 μ M).

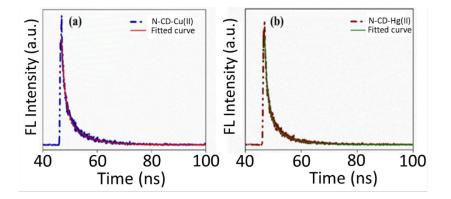


Figure S13. (a) Emission decay of N-CD in presence of Cu^{2+} , experimental (dotted curve) and the fitted curve (full line) in aqueous medium and (b) Emission decay of N-CD in presence of Hg²⁺, experimental (dotted curve) and the fitted curve (full line) in aqueous medium.

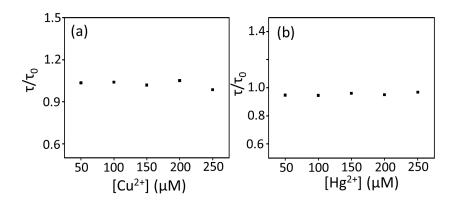


Figure S14. Ratios of emission life-time of N-CD with different concentration of (a) Cu^{2+} ion and (b) Hg^{2+} ion.

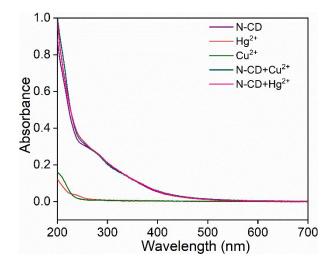


Figure S15. UV-vis spectra of N-CD, Hg^{2+} and Cu^{2+} solutions with perchlorate anion (50 μ M) and N-CD upon addition of Hg^{2+} and Cu^{2+} solutions.

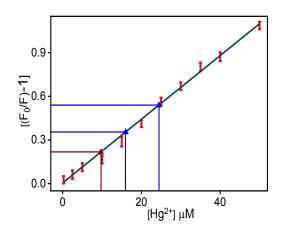


Figure S16. Plot for estimation of Hg^{2+} ion in real samples using the linear segment of the standard curve obtained from fluorescence titration of N-CD using standard solutions of Hg^{2+} .

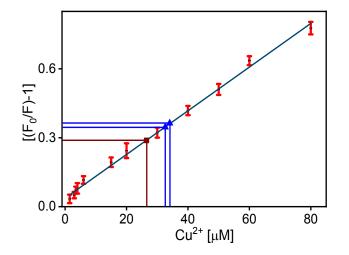


Figure S17. Plot for estimation of Cu^{2+} ion in real samples using the linear segment of the standard curve obtained from fluorescence titration of N-CD using standard solutions of Cu^{2+} .

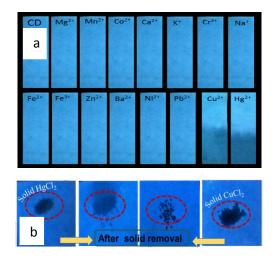


Figure S18. Paper strips coated with N-CD, (a) dipped into aqueous solution of different metal ions (5 μ M) for five minutes and dried in air (colour change was noted for Cu²⁺ and Hg²⁺) and (b) a pinch of solid HgCl₂ and CuCl₂ were kept on the strips and were removed after five minutes (colour change of the spot was noted).

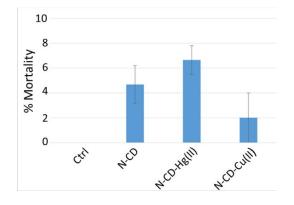


Figure S19. Mortality percentage (%) calculation for N-CD, N-CD-Cu²⁺ and N-CD-Hg²⁺.

sample ID	spiked amount (µM)	ICP-MS (µM)	using N-CD (µM)	recovery (%)			
		Hg^{2+}					
DW 1	10.00	12.81	10.73	107.3			
TW 1	15.00	17.73	16.04	106.9			
TW 1	25.00	25.29	24.39	97.5			
		Cu ²⁺					
DW 1	25.00	23.68	26.51	106.0			
TW 1	30.00	27.38	32.59	108.6			
TW 2	35.00	35.25	34.05	97.2			
DW = Drinking water, TW = Tap water							

Table S1. Real Sample Analysis for Hg2+ and Cu2+ in WaterUsing N-CD and ICP-MS