Supporting information:

Substituted 4,5'-Bithiazoles as Catalytic Inhibitors of Human DNA Topoisomerase $\Pi\alpha$

Kaja Bergant Loboda^{1,3}, Matej Janežič², Martina Štampar⁴, Bojana Žegura⁴, Metka Filipič⁴ and Andrej Perdih¹*

¹National Institute of Chemistry, Hajdrihova 19, SI 1000 Ljubljana, Slovenia ²Structural Bioinformatics Team, Division of Structural and Synthetic Biology, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan

³University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7 SI 1000 Ljubljana, Slovenia

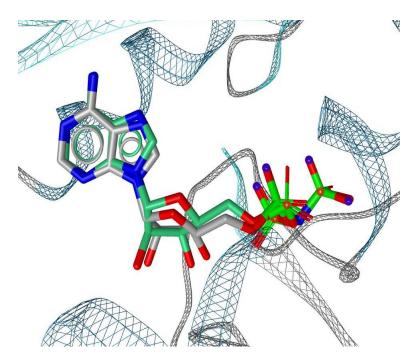
⁴National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna

pot 111, 1000 Ljubljana, Slovenia

* Corresponding author:

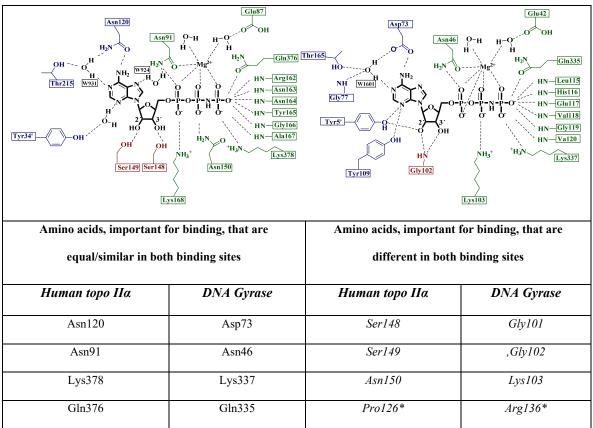
Andrej Perdih National Institute of Chemistry Hajdrihova 19, SI-1001 Ljubljana, Slovenia

Tel.: +386-1-4760-376


e-mail: andrej.perdih@ki.si

1. Tested commercially available substituted 4,5'-bithiazoles

Table S1. List of compounds tested for their inhibitory activity on human topo $II\alpha$


Number	Chemical code	Vendor
1	STK163157	VitasM Labs ¹
2	7872757	ChemBridge ²
3	7858097	ChemBridge ²
4	7211760312	Otava ³
5	STK015148	VitasM Labs ¹
6	7859208	ChemBridge ²
7	5936031	ChemBridge ²
8	5934630	ChemBridge ²
9	5935030	ChemBridge ²
10	5932095	ChemBridge ²
11	STK070262	VitasM Labs ¹
12	5932282	ChemBridge ²
13	5935989	ChemBridge ²
14	7211760371	Otava ³

2. Validation of the docking procedure and molecular docking of substituted 4,5'-bithiazoles

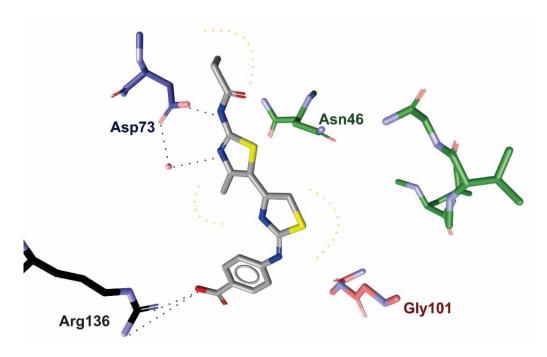
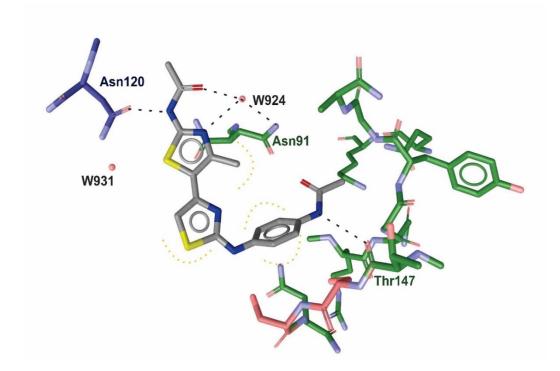


Figure S1. Comparison of the docked and x-ray conformation of AMP-PNP in the ATP human topo IIα binding site using GoldScore scoring function (PDB: 1ZXM). RMSD of 0.9 Å between heavy atoms of both poses was obtained.


Table S2. (above) 2D Intermolecular interaction pattern of the AMP-PNP ligand in the ATP bindings sites of both type II topoisomerases. (bellow) Selected amino acid pairs, important for ATP binding, that are equal/similar or different in the ATP binding sites of human topo IIα and DNA gyrase.

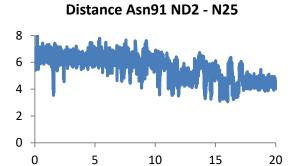
^{*}residue pair Pro126(htII\alpha)/Arg136(DNA Gyrase) is listed since ARG136 plays a role in binding of 4,5'-bithiazole compound 13 to the DNA Gyrase ATP binding site.

Figure S2. Docking binding mode of compound **13** in the DNA gyrase ATP binding site generated using gyrase crystal structure with the bound AMP-PNP substrate (PDB: 1EI1).

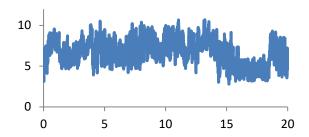
Figure S3. Proposed docking binding modes of active substituted 4,5'-bithiazole 9 in the human topo IIα **ATP** binding site (PDB: 1ZXM).

3. Comparison of the bacterial DNA gyrase vs. human topoisomerase $II\alpha$ inhibition activities for compounds selected by both virtual screenings

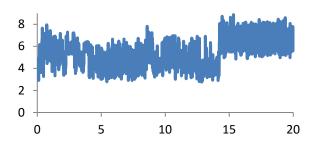
Table S3. Comparison of the human topo IIα and bacterial DNA Gyrase inhibition vales for compounds that were selected in this screening assays as well as also by our previous virtual screening campaign on bacterial DNA Gyrase [ref 39].


Compound	IC ₅₀ [μM]	IC ₅₀ [μM]
	bacterial DNA gyrase	human topo IIa
5	8.2	70.1
6	67	37.7
8	5.5	119.7
12	30.0	192.9
13	1.1	123.0

4. Molecular dynamics simulation and dynophore calculations


Table S4. Assigned atom types and partial atomic charges of compound 1 using CHARMM General Force Filed (CGenFF).

H29 N28 N25 H32 C24 C24 C31 H33 H34 H21 F14 F15 C10 C12 F16 TH S5 N8 C10 C17 N8 H20 H23 H19										
Name	Type	q	Name	Type	q					
C1	CG2R57	-0,121	C18	CG2R61	-0,115					
C2	CG2R57	0,277	H19	HGR61	0,155					
N3	NG2R50	-0,638	H20	HGR61	0,250					
C4	CG2R53	0,341	H21	HGR61	0,250					
S5	SG2R50	0,015	H22	HGR61	0,115					
С6	CG2R51	-0,239	H23	HGPAM1	0,376					
Н7	HGR52	0,210	C24	CG2R51	0,276					
N8	NG311	-0,310	N25	NG2R50	-0,624					
С9	CG2R61	-0,034	C26	CG2R53	0,280					
C10	CG2R61	-0,115	S27	SG2R50	0,020					
C11	CG2R61	-0,196	N28	NG321	-0,574					
C12	CG2R61	-0,432	H29	HGPAM2	0,334					
C13	CG302	0,803	Н30	HGPAM2	0,334					
F14	FGA3	-0,159	C31	CG331	-0,195					
F15	FGA3	-0,159	Н32	HGA3	0,090					
F16	FGA3	-0,159	Н33	HGA3	0,090					
C17	CG2R61	-0,196	Н34	HGA3	0,090					


4.1 Measured time-dependant distances between selected protein atoms and Compound 1

Distance Asn150 ND2 - F15

Distance Ser149 N - F15

Figure S4. Measured time-dependant distances between selected protein atoms and compound 1 during the MD simulation.

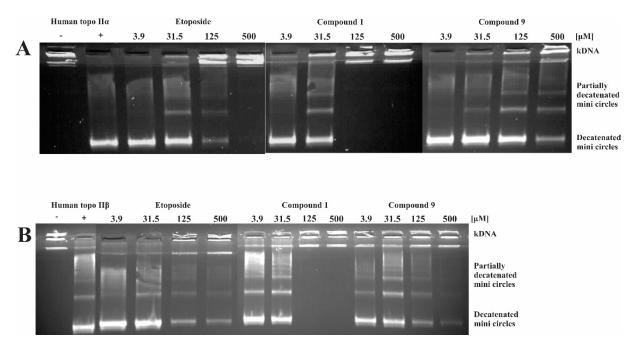
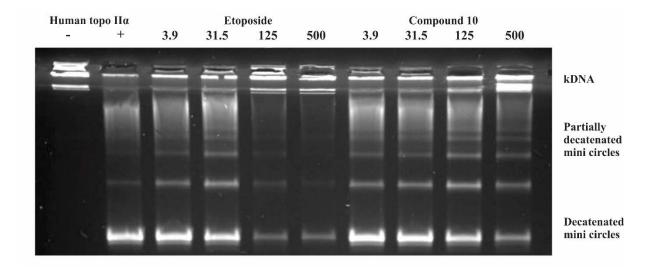
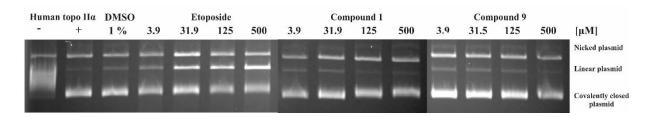

5. Results of the human topo IIα and human topo IIβ decatenation assay

Table S5: Results of the decatenation assay catalysed by human topo IIα for compounds 1 and 9 and positive control etoposide. Results are represented as % of decatenated kDNA.

Compound	% Decatenated Compound Assay 1			9,	% Decatenated Assay 2				% Decatenated Average			
	Conc	entrati	ion (μN	(I)	Conc	entrati	ion (μN	(I)	Conc	Average Concentration (μΜ) .9 31.5 125 500 00 93.9 32.8 4.4		
	3.9	31.5	125	500	3.9	31.5	125	500	3.9	31.5	125	500
Etoposide	100	91	21.6	1.5	100	96.7	44	7.2	100	93.9	32.8	4.4
1	100	72.4	0	0	91	89.4	0	0	95.5	80.9	0	0
9	98.7	99.4	89.5	34	99.2	97.9	86.7	31.3	98.9	98.7	88.1	32.7


Table S6: Results of the decatenation assay catalysed by human topo II β for compounds 1 and 9 and positive control etoposide). Results are represented as % of decatenated kDNA.

	0	% Decatenated			Q	% Decatenated			% Decatenated			
Compound	Assay 1				Assay 2			Average				
	Conce	ntratio	n (μM)	μM) Concentrati			n (μM)		Conce	Concentration (µM)		
	3.9	31.5	125	500	3.9	31.5	125	500	3.9	31.5	125	500
Etoposide	100.0	94.0	24.6	15.0	100.0	92.8	23.1	14.4	100.0	93.4	23.9	14.7
1	87.3	78.6	0	0	95.5	79.7	0	0	91.3	79.2	0	0
9	87.0	80.1	30.5	17.5	75.6	73.3	21.7	5.3	81.3	76.7	26.1	11.4


Figure S5: (**A**) Results of the second run of the decatenation assay of human topo II α for compounds **1**, **9** and etoposide. The assay was performed at 4 different concentrations (3.9, 31.5, 125 and 500 μM) of compound **1** and **9** and reference compound etoposide. (**B**) Results of the second run of the decatenation assay of human topo II β for compounds **1**, **9** and

etoposide. The assay was performed at 4 different concentrations (3.9, 31.5, 125 and 500 μ M) of compound 1, 9 and reference compound etoposide.

Figure S6. Results of the first run of the human topo II α decatenation assay for compound **10** and etoposide. The assay was performed at 4 different concentrations (3.9, 31.5, 125 and 500 μ M) of compound **10** and reference compound etoposide. Compound **10** inhibited 64% decatenation at concentration 500 μ M and 26% at 125 μ M. Experiment was performed in duplicates (second run is not shown).

6. Results of the human topo IIα cleavage assay

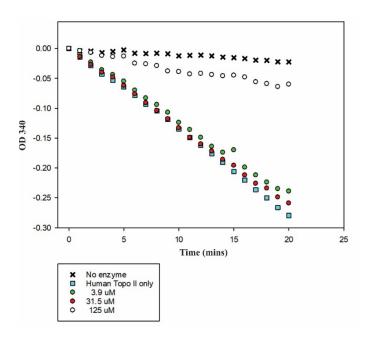
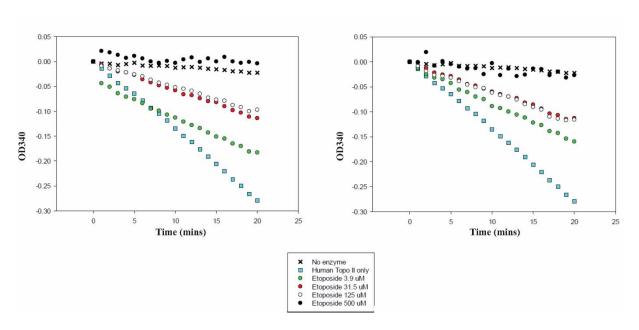


Figure S7. Results of the second run of the topoisomerase II α cleavage assay. The assay was performed at 4 different concentrations (3.9, 31.5, 125 and 500 μ M) of compound **1** and **9** and reference compound etoposide. Linear band was measured as a % of the total DNA, with 100% representing the amount of DNA in track 1 (DNA alone).


Table S7. % of linear DNA, determined in the cleavage assay for compounds 1 and 9 and etoposide at four concentrations (500, 125, 31.5 and 3.9 μ M).

Compound	% Linear	% Linear	% Linear Average
DNA alone	0	0	0
DNA + topo II	55.5	4.08	4.81
DNA + topo II + DMSO	7.45	8.77	8.11
Etoposide 3.9 μM	22.76	11.88	17.32
Etoposide 31.5 μM	33.00	36.26	34.63
Etoposide 125 μM	45.35	36.91	41.13
Etoposide 500 μM	43.03	48.40	45.71
Compound 1 3.9 µM	8.05	5.57	6.81
Compound 1 31.5 µM	6.32	7.77	7.04
Compound 1 125 µM	3.02	2.85	2.94
Compound 1 500 µM	2.45	2.98	2.72
Compound 9 3.9 µM	5.49	7.03	6.26
Compound 9 31.5 µM	7.77	6.75	7.26
Compound 9 125 μM	4.84	4.60	4.72
Compound 9 500 μM	2.95	2.25	2.60

7. Results of the human topo IIa ATPase activity

Figure S8. Results of the ATPase assay (second run) of compound **1**. It inhibited 85% of ATPase activity at 125 μ M. The reaction was performed at three concentrations (3.9, 31.5 and 125 μ M).

Figure S9. Results of the ATPase assay for etoposide (two runs). Results of the ATPase assay for the second run of compound **1**. The reaction was performed at four concentrations (3.9, 31.5, 125 and 500 μ M). Etoposide inhibited 70% (first run) or 63% (second run) of ATPase activity at 125 μ M.

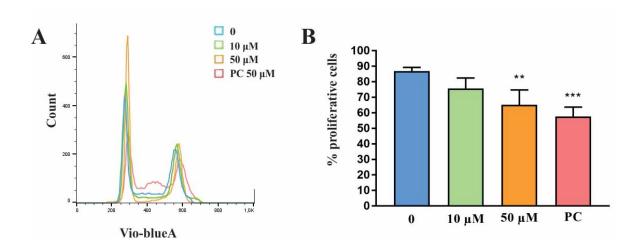
Table S8. Results of the ATPase assay given as % activity which were calculated as follows: The spectrophotometer produces an output as change in OD340 with time. After 40 or 60 minutes the blank reading (no enzyme) was subtracted from the readings for each compound and divided by the positive reading (no inhibitor, 100% activity) minus the blank to give the percentage ATPase activity for each compound. There were solubility problems with compound 1 at 500 μ M (erratic readings). 2 negative controls and 5 positive controls were run along with a 10 μ M etoposide control.

		Rate ATPase activity (μmol/min)										
	Run 1					Ru	n 2					
	No	htII #1		0.26	No	htII #2		0.21				
	htI	I only #1		3.35	htII only #2			3.12				
	htII only #3			3.33	htI	I only #4		3.14				
	htII	onliy #5		3.19	+ novo	biocin 10μN	Л	0.14				
	Avera	ige No htII		0.24	Avera	Average htII only		3.22				
	Perc	entage AT	Pase activ	ity of	Percentage ATPase activity of							
		comp	ounds			comp	ounds					
	Co	ncentratio	n (µM) Ru	ın 1	Coi	ncentratio	n (µM) Ru	ın 2				
Compound	3.9	31.5	125	500	3.9	31.5	125	500				
Etoposide	52.71	36.43	30.23	0	51.94	37.21	37.21	4.65				
Compound 1	92.25	96.12	24.81	65.12	88.37	94.57	16.28	36.43				

8. Human topoisomerase II ATPase assays at different concentration of the ATP – Competitive ATPase assay

The spectrophotometer produces an output as change in OD340 with time (data not shown). The data from the runs after the addition of the ATP were plotted after adjusting the starting OD340 to zero. Lines are fitted to these by linear regression and the rates (OD change/min) calculated. The rates for each ATP and inhibitor concentration were then calculated as μ M ATP hydrolysed/min using an extinction coefficient of 6.22 M⁻¹ cm⁻¹ and a path length of 0.5 cm. The rates were then plotted against the ATP concentration and curves fitted to the data using the hyperbolic equation y=(ax/(b+x)) where y=rate, x=[ATP], a=Vmax and b=Km. Using the equation y=y0+(ax/(b+x)) it was possible to solve it and obtain values.

Table S9: The table shows the rates (μ M /min) at different compound and ATP concentrations after subtraction of the background rate and calculated Km (mM ATP) and Vmax (μ M ATP/min) values. They were calculated from equation y = (ax /(b+x)) where y = rate, x = [ATP], a = Vmax.

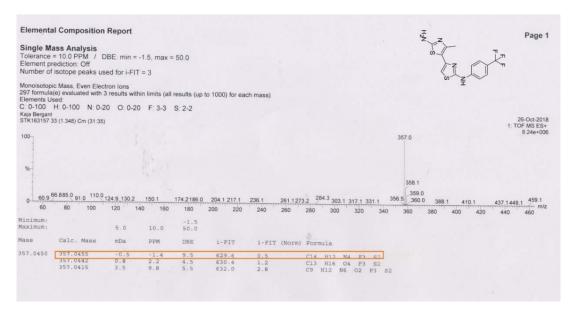

Rates	for contro	ols with	out enz	yme in the	presen	ce of 2	mM ATP ([μmol/m	in)	
100 μΜ	75 μ	M	5	θ μΜ	31	μM	3.9 µ	ιM	0 μΜ	
1.125	0.51	15	0	.354	0.3	354	0.25	57	0.386	
Rates (µm	Rates (µmol/min) at different ATP concentrations (mM) after subtraction of background									
[Cp 1] µM	2	1	0.75	0.5	0.25	0.1	0.075	0.05	0.025	
100	0.772	0.354	0.289	0.418	0.064	0.032	0.000	0.032	0.064	
75	0.740	0.354	0.386	0.322	0.225	-	-0.096	0.032	0.096	
						0.064				
50	1.222	0.772	0.707	0.450	0.193	0.032	0.129	0.096	0.000	
31	1.286	1.061	0.868	0.707	0.450	0.161	0.096	-	-0.129	
								0.032		
3.9	2.444	1.897	1.801	1.479	1.158	0.450	0.354	0.257	0.064	
0	2.990	2.605	2.508	1.994	1.350	0.707	0.482	0.322	0.129	
	Calcula	ted Km	(mM A	TP) and	Vmax (į	ıM ATI	P/min) valu	ues		
[Cp 1] µM	100	7	75	50	3	1	3.9		0	
Km	6.14	3.	35	2.5	0.	88	0.49		0.41	
Vmax	3.07	1.	94	2.77	1	.9	2.97		3.72	

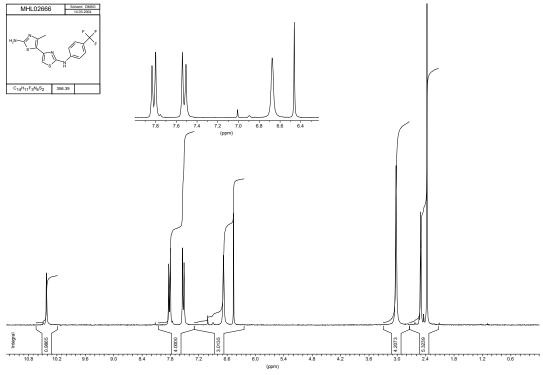
9. Cytotoxicity on MCF-7 and HepG2 cell lines using MTS assay

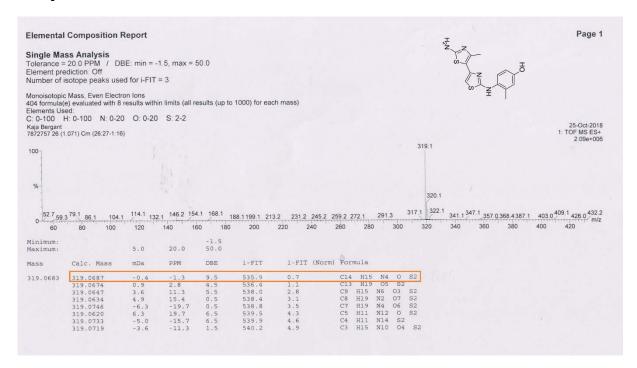
Table S10. Determined cytotoxicity of the substituted 4,5'-bithiazoles represented by EC₅₀ values and value ranges on HepG2 and MCF-7 cancer cell lines (24h vs. 72h).

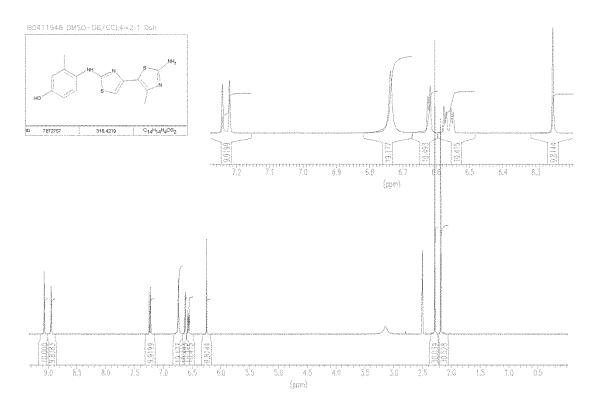
Compound	EC ₅₀ [μM]	EC ₅₀ [μM]	EC ₅₀ [μM]	EC ₅₀ [μM]
	MCF-7 (24h)	MCF-7 (72h)	HepG2 (24h)	HepG2 (72h)
1	65.0 (58.1-70.9)	59.5 (58.1-59.3)	72.8 (64.2-86.1)	46.8 (47.1-49.3)
7	12.3 (10.4-14.9)	6.6 (4.6-7.6)	45.6 (32.8-53.7)	32.3 (29.7-37.2)
9	15.0 (11.2-16.2)	13.8 (9.7-15.9)	73.5 (59.6-80.8)	23.5 (17.1-32.1)
10	16.4 (14.6-17.0)	4.5 (3.4-5.9)	34.7 (31.5-38.9)	14.6 (12.7-19.5)
14	32.3 (28.2-34.3)	7.5 (5.2-6.7)	47.7 (31.7-60.4)	28.2 (20.5-29.9)
Etoposide	320.2 (226.9-358.9)	12.6 (10.1-15.9)	196.2 (169.4-201.5)	25.8 (15.1-35.3)

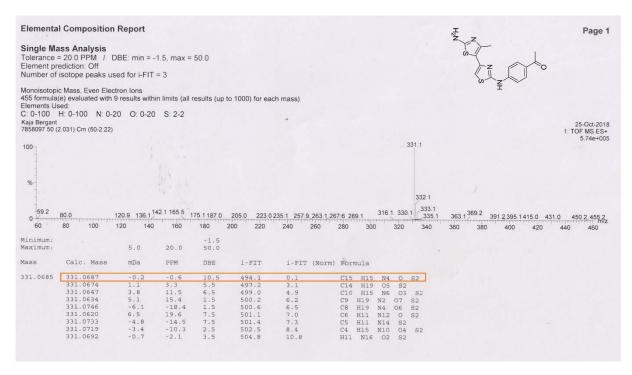
10. Investigation of the effect of 4,5'-bithiazoles on the cell cycle and cell proliferation

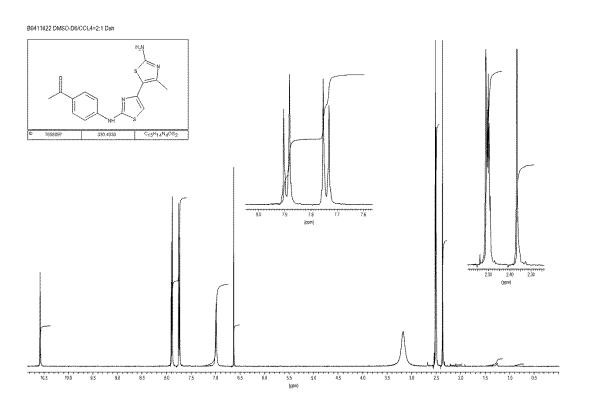

Figure S10. A) Representative histograms for non-labelled cells, vehicle control (0), compound **1** at 10 μ M and 50 μ M and etoposide at 50 μ M for cell cycle analysis. (B) Percent of proliferative cells after 24h treatment to compound **1** at 50 μ M and 10 μ M determined with the Ki67 antibody (** p < 0.01 and *** p < 0.001).

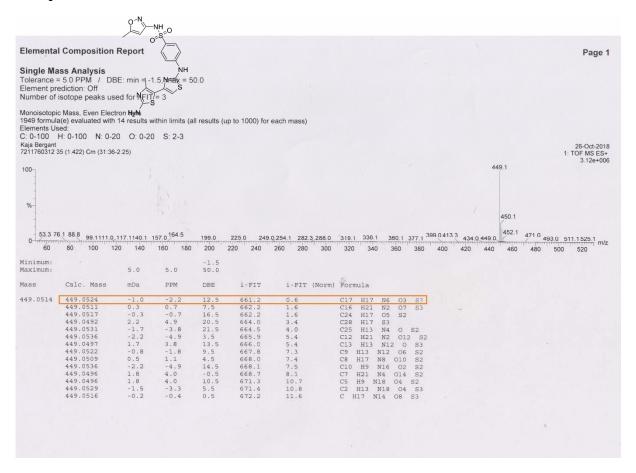

Table S11. Results of cell cycle analysis for compound 1. Experiments were performed in 3 independent measurements and SD values were calculated. Significant differences between the vehicle control (0) and treated cells (compound 1) as well as PC (etoposide; 50 μ M) were calculated using ANOVA (* p < 0.05, ** p < 0.01 and *** p < 0.001).

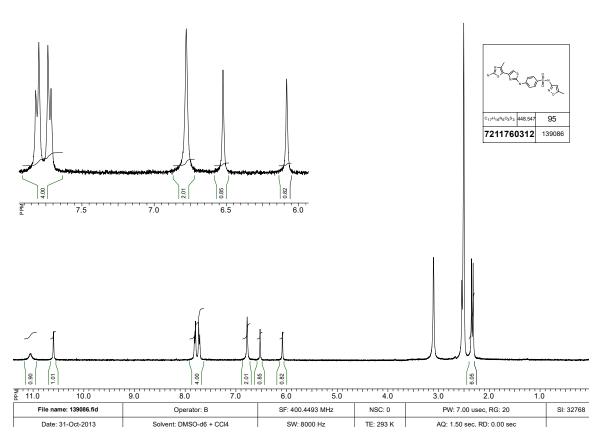

Compound	0	1 (10 μM)	1 (50 μΜ)	PC
G1	46.7 ± 4.6	56.5 ± 6.4	60.6 ± 7.0 *	33.1 ± 2.4*
S	25.9 ± 3.3	17.5 ± 1.1***	11.8 ± 4.5**	$44.0 \pm 1.5***$
G2	25.4 ± 4.9	24.8 ± 4.5	26.2 ± 2.5	22.9 ± 3.5
>G1, G2<	2 ± 1.1	1.2 ± 1.0	1.4 ± 0.6	0

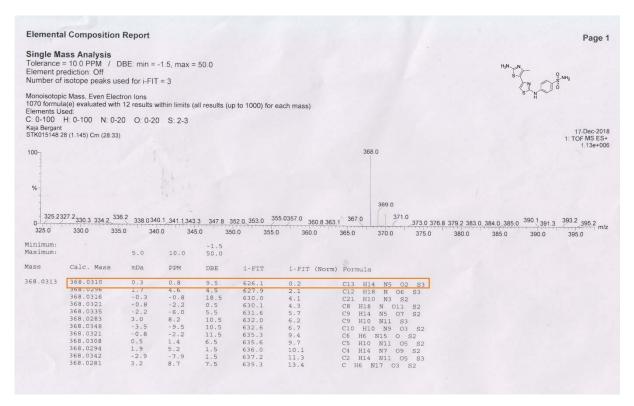

11. NMR, HR-MS, elemental analysis and HPLC purity of active compounds

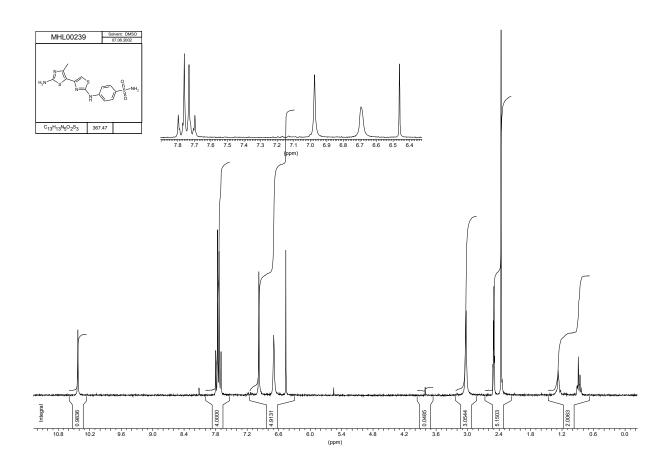

- 1) The HR-MS analysis were performed at the Centre for Mass spectroscopy, Josef Stefan Institute, Ljubljana.
- 2) The 1H-NMR spectra were supplied by vendors.
- 3) Elemental analysis was performed at the National Institute of Chemistry, Ljubljana using Perkin-Elmer C, H, N, S analyser.
- 4) HPLC purity measurements were performed at National Institute of Chemistry Slovenia

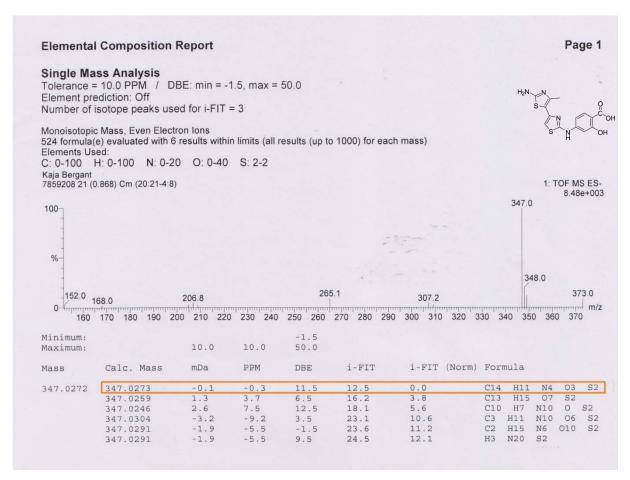


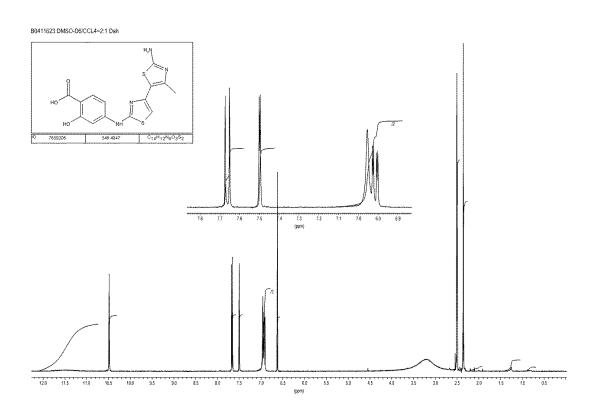


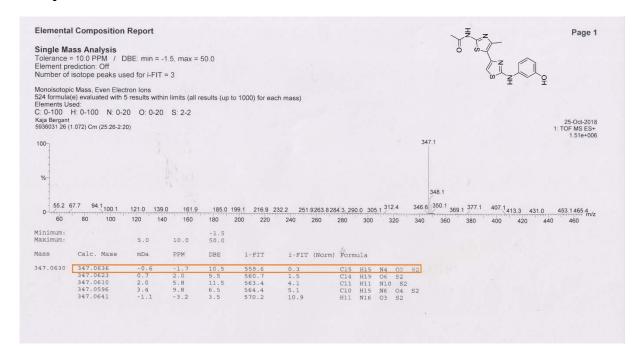


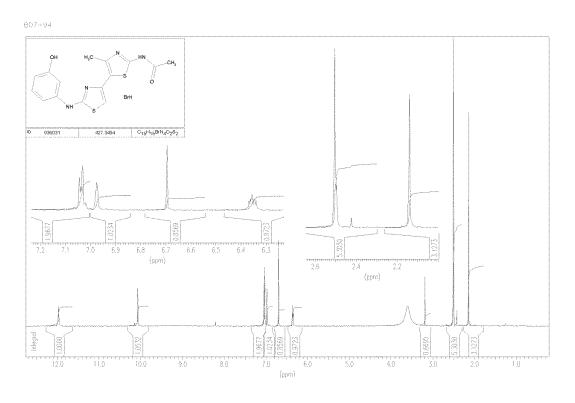


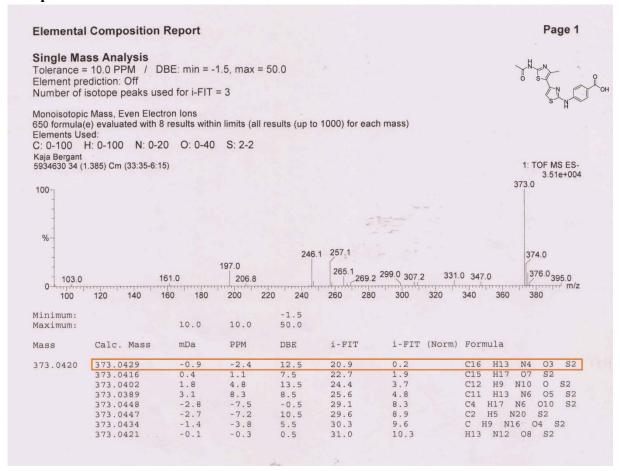


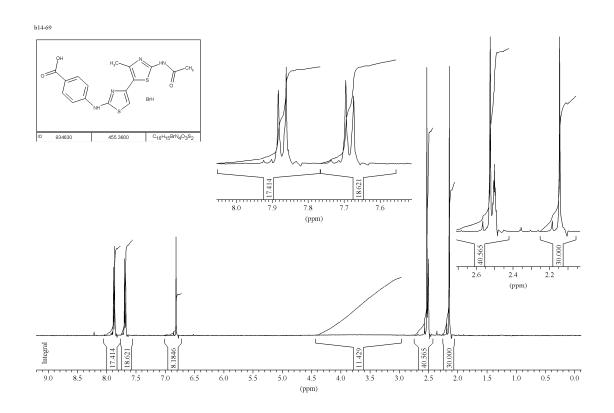


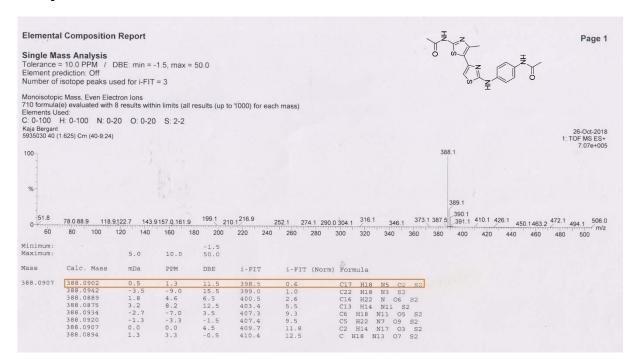


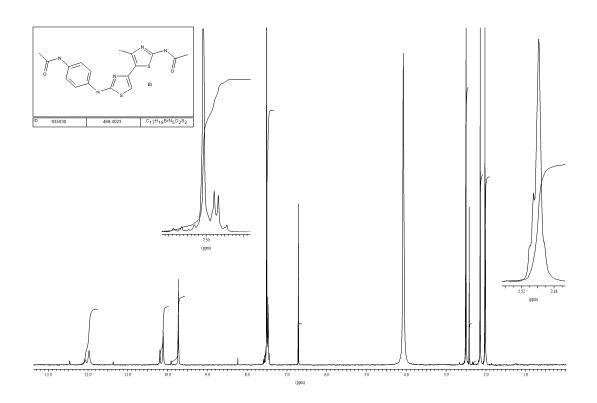


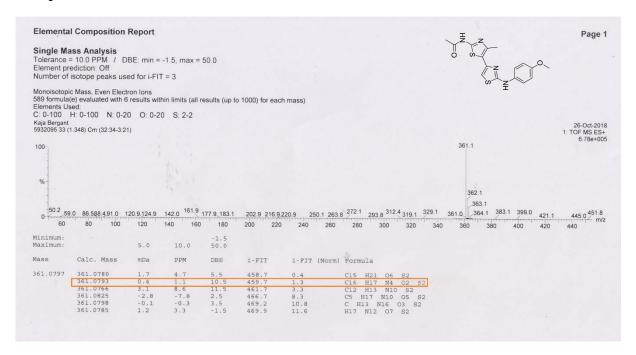


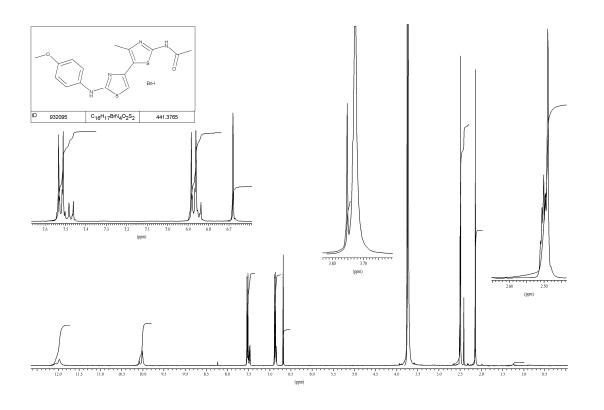


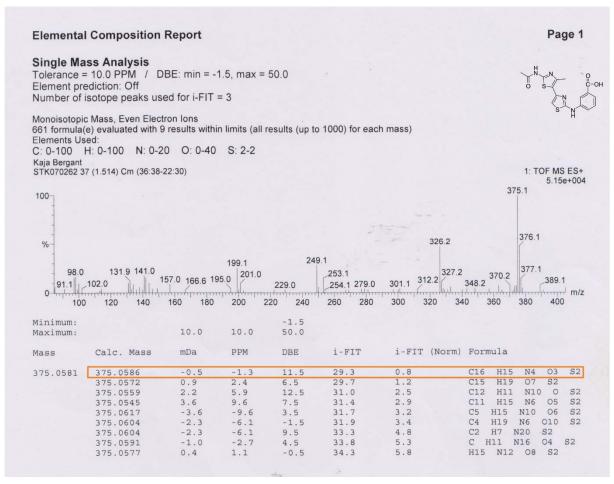


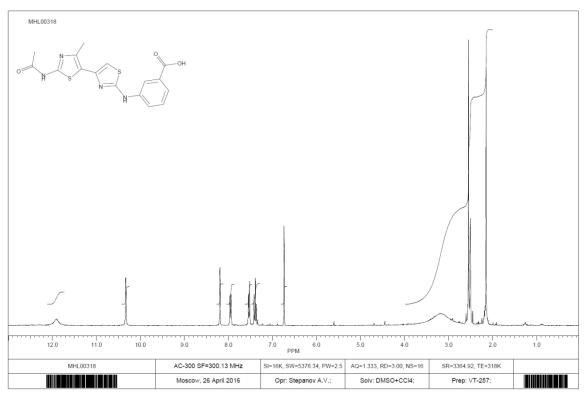


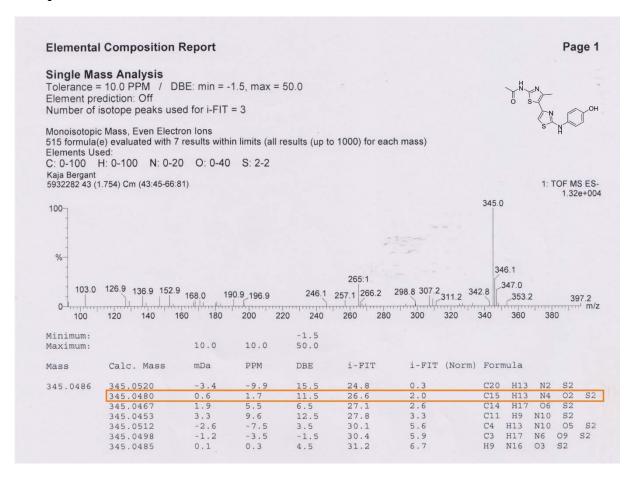


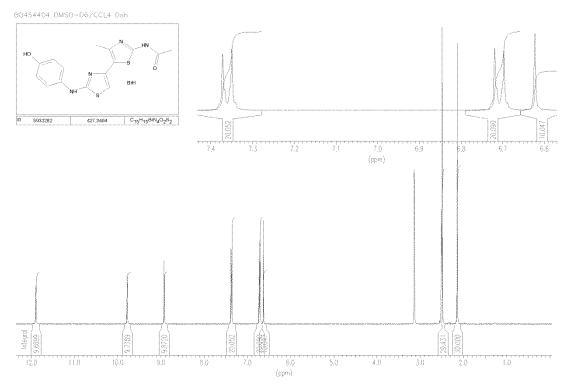

h

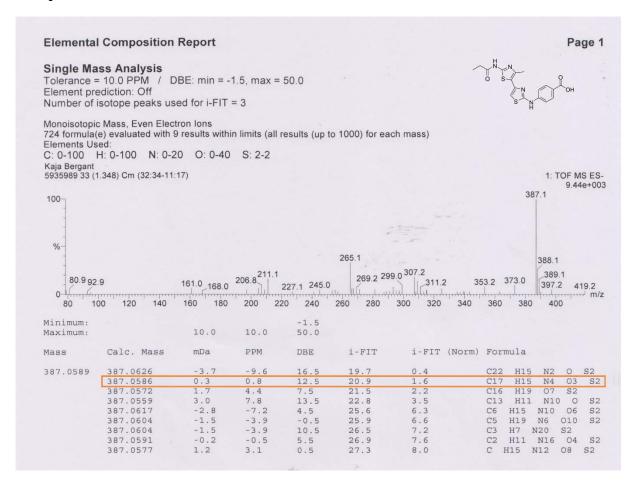


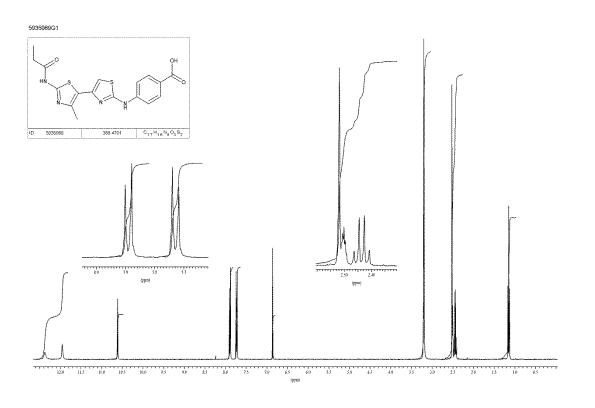


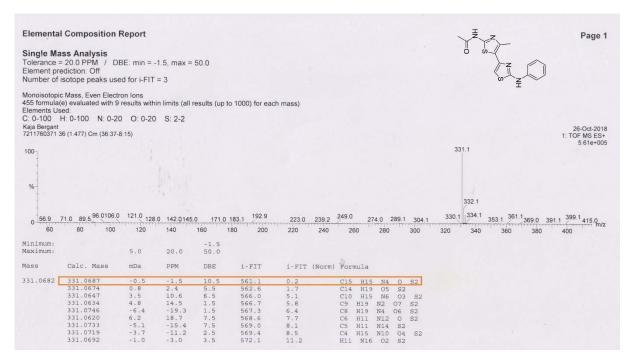


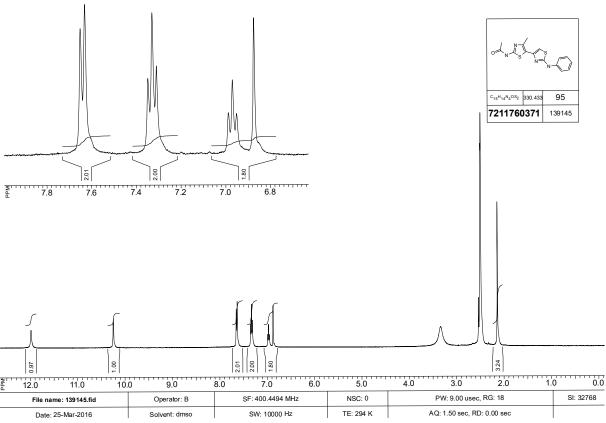












Etoposide

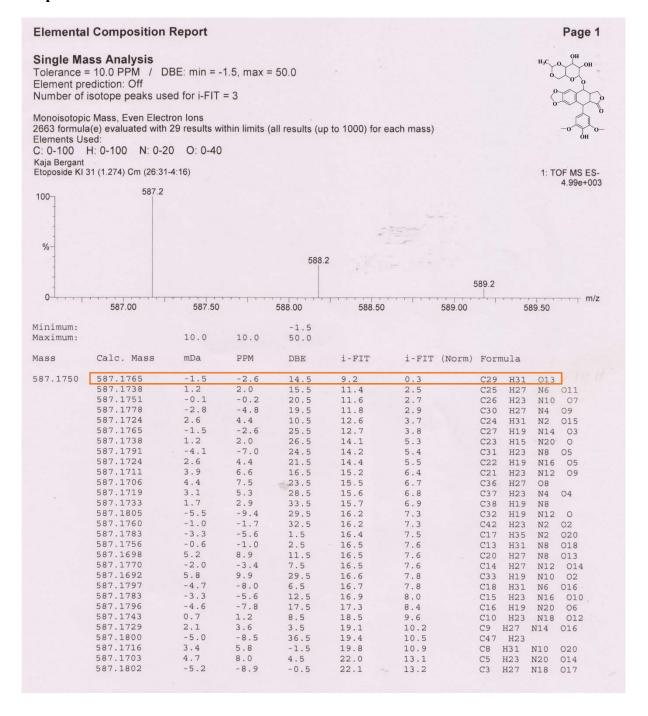


Table S12. Elemental analysis data of active compounds 1, 9 and 10.

Compound	Molecular formula		Calculated				Found			
		C	Н	N	S	C	Н	N	S	
1	C ₁₄ H ₁₁ N ₄ S ₂ F ₃	47.2	3.1	15.7	18.0	45.9	3.2	15.2	17.6	
9	$C_{17}H_{18}BrN_5O_2S_2X$	39.8	4.5	13.7	12.5	41.2	4.7	13.8	12.0	
	2.5 H ₂ 0									
10	C ₁₆ H ₁₇ BrN ₄ O ₂ S ₂ X	37.4	4.9	10.9	12.5	38.9	5.0	11.2	12.5	
	4 H ₂ 0									

Table S13. HPLC purity data for active compounds 1, 7, 10 and 14.

	Compound 1	Compound 7	Compound 10	Compound 14
Area (1%) (0.001 mg/mL)	66680342.00	149750383.00	59760385.00	281812961.00
Area TOTAL (100%) (1 mg/mL)	7084848214.00	4745097290.00	4193933896.00	6488929607.00
Area max (100%) (1 mg/mL)	6705645216.00	4663958201.00	4028846164.00	6101844241.00
Area (impurities 100%; TOTAL)	379202998.00	81139089.00	165087732.00	387085366.00
Purity [%]	94.31	99.46	97.24	98.63