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Figure S1: The interface of the PA membrane. To define a membrane top surface, the system is 
divided into grids with the resolution of 0.2×0.2 nm2 in the X-Y plane and atoms of the largest 
value in the Z-axis are selected as top atoms to define the membrane surface.
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Figure S2: Interaction energy (i.e., the sum of the Lennard-Jones and electrostatic energies) of 
protein and membrane Surface.  

From the estimated interaction energy, when the protein from the bulk got attached on the surface 

at around 5.5 ns, an increase amount of interaction between the polymer membrane and protein 

was recorded. The change in interaction energies for 30 MPa over the 230 ns of simulation was 

larger than the lower pressure case, which also explains the greater secondary structural changes 

of protein for 30 MPa case. 
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Figure S3: Net molecule number of waters passed through membrane for different pressure a) 
Without Protein attachment b) with protein attachment
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Figure S4: Pore size distribution of PA membrane at ΔP = 5 MPa, 30 MPa and equilibrium. Pore 

size distribution was measured using the Monte Carlo approach1.
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Figure S5: Density distribution at ΔP = 30 MPa without the addition of protein.
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Figure S6: Water molecules shown in red & white are shown trapped around PA membrane in 

cage-like structure. The membrane fragments are drawn with water molecules in the center and 

marking all the membrane fragments within 6 Å.

Figure S7. The comparison of the original simulation data (circle symbols) and the curve fitting data (line) 

of self-intermediate scattering function  of oxygen atoms of water molecules inside the membrane 𝐹𝑠(𝑘,𝑡)

at wavenumbers k = 0.1, 0.25 and 0.303 -1 for the membrane at the equilibrium condition (a) and the Å

nonequilibrium with ΔP = 0.5 MPa (b).  The fitting parameters are listed in Table 1.
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