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Current under tight coupling

The Langevin equations describing the full system are

ζθ̇o +
no

2
Eo sinno(θo − φ) +

1

2
Ecouple sin (θo − θ1)− µH+ = ηθo , (S1)

ζθ̇1 +
n1

2
E1 sinn1θ1 −

1

2
Ecouple sin (θo − θ1)− µATP = ηθ1 , (S2)

with the noise having statistics that satisfy

〈ηi(t)ηj(t
′)〉 = 2ζkBTδijδ(t− t′). (S3)

Here, over-dots denote a time derivative. We impose identical friction coefficients ζ.

We consider the case of equal numbers of energy barriers in each subsystem, no = n1 = n.

Summing (S1) and (S2), dividing by two, and substituting θo = θ1 = θ (in the infinite-

coupling limit of Ecouple →∞, the subsystems maintain the same angle), gives

ζθ̇ +
n

4
Eo sinn(θ − φ) +

n

4
E1 sinnθ − 1

2
(µH+ + µATP) = ηθ, (S4)

where the composite noise term ηθ satisfies

〈ηθ(t)ηθ(t′)〉 = ζkBTδ(t− t′). (S5)

The resulting one-dimensional energy landscape is

V (θ) = −1

4
Eo cosn(θ − φ)− 1

4
E1 cosnθ (S6a)

= −1

4
E cosn(θ − ϕ) , (S6b)
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for

E ≡
√
E2

o + E2
1 + 2EoE1 cosnφ , (S7)

tannϕ ≡ sinnφ
Eo

E1
+ cosnφ

. (S8)

The chemical driving force exerted on the one-dimensional system is µ ≡ 1
2
(µH+ + µATP).

The exact expression for the average probability current is:1

〈J 〉 =
kBT

ζ

[
(1− e−2πβµ)−1

∫ 2π

0

dθ eβU(θ)

∫ 2π

0

dθ′ e−βU(θ′) −
∫ 2π

0

dθ e−βU(θ)

∫ θ

0

dθ′ eβU(θ′)

]−1

,

(S9)

We integrate this numerically, using Mathematica’s NIntegrate function with the “DoubleEx-

ponential” method. U(θ) ≡ V (θ)−µθ is the combination of the underlying energy landscape

and the chemical driving force. We note that when the number of energy barriers is not equal

(no 6= n1), this result can still be used; the only difference lies in the energy landscape V (θ),

which generally does not simplify as in (S6b).

In the limit of small energy barriers compared to the chemical driving force (noEo, n1E1 �
1
2
(µH+ + µATP)), also referred to as the case of no energy barriers, (S4) reduces to

ζθ̇ − 1
2
(µH+ + µATP) = ηθ , (S10)

which describes diffusion subject to a constant force 1
2
(µH+ + µATP). Integrating (S10) over

fluctuations gives the average drift velocity

〈θ̇〉 =
µH+ + µATP

2ζ
. (S11)

Finally, output power is PATP = −µATP〈θ̇〉 = −2πµATP〈J 〉.
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Current in the absence of energy barriers

Starting from the dynamical equations for the full two-dimensional system (S1,S2), consider

the limit of energy barriers much smaller than the chemical driving forces (noEo � µH+ ,

n1E1 � µATP), leading to

ζθ̇o +
1

2
Ecouple sin (θo − θ1)− µH+ = ηθo , (S12)

ζθ̇1 −
1

2
Ecouple sin (θo − θ1)− µATP = ηθ1 . (S13)

Summing and subtracting these equations, and changing variables to the mean

θ̄ ≡ 1

2
(θo + θ1) , (S14)

and relative angle

∆θ ≡ 1

2
(θo − θ1) , (S15)

uncouples (S12,S13) to give independent Langevin equations:

ζ∂tθ̄ −
1

2
(µH+ + µATP) = ηθ̄ , (S16)

ζ∂t∆θ +
1

2
Ecouple sin 2∆θ − 1

2
(µH+ − µATP) = η∆θ . (S17)

The transformed noise terms ηθ̄ ≡ 1
2
(ηθo + ηθ1) and η∆θ ≡ 1

2
(ηθo − ηθ1) each satisfy

〈η(t)η(t′)〉 = ζkBTδ(t− t′) . (S18)

(S16) can be integrated directly, exactly like (S10). (S17) is analogous to (S4) in the sense

that both are Langevin equations describing a system subject to a periodic energy landscape

and a constant driving force. An exact expression for the probability current can be derived
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using (S9), where U(θ) = −1
4
Ecouple cos 2θ − µθ and µ = 1

2
(µH+ − µATP). The system is now

reduced to one dimension with energy landscape U(θ) and an externally set chemical driving

force µ. Linearly combining these probability currents gives each subsystem’s probability

current:

〈Jo〉 = 〈Jθ̄〉+ 〈J∆θ〉 , (S19)

〈J1〉 = 〈Jθ̄〉 − 〈J∆θ〉 . (S20)

Output power is PATP = −µATP〈θ̇1〉 = −2πµATP〈J1〉.

Power-maximizing coupling
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Figure S1: Visualization of inchworming and slippage. Fo and F1 start in the same state (a),
then Fo advances to the next state (b). Inchworming, which leads to energy transduction,
involves F1 advancing to catch up with Fo (c-d). Slippage occurs when Fo further advances
to the next state (e-f), after which it is likely to continue on to complete a full cycle (g).
Throughout, n = 3 and there is no phase offset. Landscape tilts are omitted to simplify
depiction.

Here we present a simple theory to predict the coupling at which output power is max-

imized, by approximating its two components (input power and efficiency) in terms of the

rates of the rate-limiting steps for energy transduction and slippage. We restrict our atten-

tion to n = 3 metastable states, no phase offset, and the regime of biological interest where
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the proton driving force is greater than and opposite in sign to the ATP driving force.

For significant coupling, Fo and F1 are frequently in the same state (Fig. S1a). For

tight coupling, Fo and F1 must cross a barrier simultaneously; but for somewhat weaker

coupling, the most likely event from this configuration is Fo moving ahead to the next state

(Fig. S1b). From there, the two most likely events are ‘inchworming’ where F1 catches up to

Fo (Fig. S1c-d) or ‘slippage’ where Fo moves further ahead (Fig. S1e-f), from which Fo will

most likely continue further to its original position (Fig. S1g-h) without F1 having moved.

The rates r = r0e
−β∆E of these competing steps are proportional to the exponentials of the

respective energy barriers (Fig. S1c,e). The rate-limiting step for inchworming (Fig. S1b→c)

has rate

rinch = r0 exp

{
−β
[
E1 −

1

2
Ecouple −

π

3
µATP

]}
. (S21)

The inchworming rate increases with decreasing barrier height, increasing coupling strength,

or increasing ATP driving force. The rate-limiting step for slippage (Fig. S1b→e) has rate

rslip = r0 exp

{
−β
[
Eo +

1

4
Ecouple −

π

3
µH+

]}
. (S22)

The slippage rate increases with decreasing barrier height, decreasing coupling strength, or

increasing proton driving force.

The ratio of inchworming and slippage rates is

rslip

rinch

= exp

{
β

[
E1 − Eo +

π

3
(µH+ − µATP)− 3

4
Ecouple

]}
. (S23)

For identical Fo and F1 barrier heights, this reduces to

rslip

rinch

= exp

{
β

[
π

3
(µH+ − µATP)− 3

4
Ecouple

]}
. (S24)
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The slippage-inchworming ratio increases with decreasing coupling strength and with in-

creasing magnitude of driving forces (i.e., more positive µH+ or more negative µATP). Notice

that barrier height has an identical effect on both rates, so cancels out when comparing the

two.

One inchworm event rotates the joint system 1/3 of a full cycle, whereas one slippage

event results in a full cycle of slip, so the efficiency is simply expressed in terms of the rate

ratio,

η

ηmax

=
1
3
rinch − rslip

1
3
rinch

(S25)

= 1− 3
rslip

rinch

. (S26)

Substituting (S24) gives the efficiency as a function of the coupling strength,

η

ηmax
= 1− 3 exp

{
β

[
π

3
(µH+ − µATP)− 3

4
Ecouple

]}
. (S27)

Figure S2 shows that this simple theory accurately predicts the coupling at which efficiency

begins to drop, across the examined variation of driving forces.

For strong proton driving force, Fo backsteps are negligible, and for intermediate-or-

stronger coupling, the slowest step is Fo stepping one state ahead of F1 (Fig. S1a→b). Hence

the (net) input power is simply proportional to the exponential of the activation energy of

this slowest step,

PH+ ∝ exp

{
−β
[

1

4
Ecouple + Eo −

π

3
µH+

]}
. (S28)
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Figure S2: Scaled efficiency as a function of coupling strength, for no barriers (blue curve),
simulated for barrier heights βEo = βE1 = 2 (orange circles) or 4 (light blue circles), and
for simple theory (Eq. (S27), dashed black curve).

Thus the output power is

PATP = − η

ηmax
PH+ (S29)

∝ exp

{
−1

4
βEcouple

}
− 3 exp

{
β
[π

3
(µH+ − µATP)− Ecouple

]}
. (S30)

This predicts that output power is maximized at coupling strength

βE∗couple =
4

3
ln 12 +

4π

9
β (µH+ − µATP) . (S31)

This aligns with intuition: increasing either the driving force on Fo (more positive µH+)

or the resistive force on F1 (more negative µATP) increases the slip between subsystems,
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hence the optimal coupling (that maximizes inter-subunit flexibility subject to only mini-

mal slippage) shifts higher. Figure 3 in the main text shows that this prediction closely

approximates the power-maximizing coupling in full numerical simulations.

Computational methods

All numerical code is freely available at Github.2

Steady-state condition

We initialize in the standard Gibbs-Boltzmann equilibrium distribution,

P (θo, θ1, t = 0) ∝ exp {−βV (θo, θ1)} . (S32)

We numerically integrate the 2D Fokker-Planck equation (see main text) with periodic

boundary conditions using standard finite-difference methods.3 This evolves the joint proba-

bility distribution from a specified initial distribution to the steady-state distribution Pss(θo, θ1).

Convergence to steady state is judged by the distribution remaining unchanged after evolu-

tion for ∆t = 10−3, as measured by the total variation distance:

1

2

∫∫
dθo dθ1 |Pss(θo, θ1, t+ ∆t)− Pss(θo, θ1, t)| < 10−16. (S33)

Setting the time scale

We assign physical units by equating the simulation timescale and the physical timescale for

analogous experiments. We approximate ATP synthase as a sphere rotating around an axis

through its center. The rotational drag coefficient for a sphere of radius r rotating in a fluid
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of viscosity η is

ζr = 8πηr3 . (S34)

The viscosity of water is 10−9 pN s nm−2, and ATP synthase has a radius ∼15 nm. The

diffusion coefficient is found using the Einstein relation,

Dphys =
kBT

ζr
, (S35)

where kB is Boltzmann’s constant, and T = 300 K is room temperature. The ratio of physical

diffusion coefficient to simulation diffusion coefficient is

Dphys

Dsim

=
1.9 · 106

10−3

rad2s−1

∆θ2∆t−1
, (S36)

for simulation grid spacing ∆θ = π/180 rad and simulation timescale ∆t. Setting this ratio to

unity implies that the simulation timestep corresponds to

∆t = 6.7 · 10−5 s . (S37)

Number of energy barriers

Varying no = n1

Here we vary the number of energy barriers, with the constraint no = n1. Figure S3 shows

output power and efficiency as a function of coupling strength for various numbers of barriers.

The output power curves in Fig. S3a are similar to those in the main text. In particular, the

curve of orange circles is identical to the case studied there. Every curve in Fig. S3a shows

a maximum at some intermediate-strength coupling. The peak is the most dramatic for six

barriers, but quite subtle for a single barrier. The efficiency, shown in Fig. S3b, varies little
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Figure S3: a) Output power as a function of coupling strength βEcouple, for different numbers
of barriers, with no = n1, no phase offset, barrier heights βEo = βE1 = 2, and chemical
driving forces µH+ = 4 kBT/rad and µATP = −2 kBT/rad. b) Efficiency under the same
conditions, scaled by the theoretical maximum efficiency ηmax ≡ −µATP/µH+ . Horizontal
grey dotted line: maximum efficiency. Infinite coupling values are calculated using (S9).

with the number of barriers.

Compared to the no = n1 = 3 result (orange circles in this plot), the output power for

more barriers has a higher peak. The more barriers, the easier it is for one of the subsystems

to diffuse ahead to a subsequent minimum since the subsystems can remain closer together,

incurring a smaller ‘penalty’ from the energetic coupling term. This also leads to wider peaks

at these coupling strengths. Moreover, when there is only a single minimum (and hence single

barrier), it is counterproductive for Fo to jump ahead, since it would end up in the same

minimum again. This introduces slippage and reduced output power and efficiency. It should

be noted that a landscape with the prescribed barrier height, chemical driving force, and

a single barrier actually does not have a local minimum. This leads to the green diamond

curve being similarly shaped to the barrier-less case, which does not have a maximum at

intermediate-strength coupling.

Figure S4 shows (a) output power and (b) efficiency as a function of the scaled phase offset
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Figure S4: a) Output power as a function of scaled phase offset nφ between the subsystems
with various numbers of barriers no = n1, at coupling strengths βEcouple = 16, barrier heights
βEo = βE1 = 2, and chemical driving forces µH+ = 4 kBT/rad and µATP = −2 kBT/rad. b)
Efficiency under the same conditions, scaled by the theoretical maximum efficiency.

nφ, for various numbers of minima. The phase offset is scaled by a factor of no = n1 = n

to compare one period across all curves. The output power varies as a function of the phase

offset, though this variation is minimal for no = n1 = 12. More barriers lead to smaller

variation in output power. More barriers means F1 must overcome a smaller barrier height

in a single hop to the next metastable state, since the tilt of the landscape stays the same.

This leads to the effective barrier height decreasing, resulting in less variation in output

power as the phase offset is varied. At the same time, as more barriers are introduced the

system slows down because there are more barriers to overcome. The opposite is seen for

fewer barriers: no = n1 = 2 has greater variation in output power, and the peak power is

somewhat higher. Effectively, a lower coupling strength is needed for a system with fewer

barriers to approach the infinite-coupling power.

A single barrier, no = n1 = 1, leads to output power that varies slightly less with phase

offset, but higher peak output power. This is likely a consequence of the landscape not

having any local minima at these parameters.
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Figure S5: a) Output power and efficiency as a function of coupling strength βEcouple with
various numbers of barriers no, while keeping n1 = 3 fixed. There is no phase offset, barrier
heights are βEo = βE1 = 2, and chemical driving forces are µH+ = 4 kBT/rad and µATP =
−2 kBT/rad. b) Efficiency under the same conditions, scaled by the theoretical maximum
efficiency. Horizontal grey dotted line: maximum efficiency.

Varying no

Figure S5 shows output power as a function of coupling strength for a varying number of

Fo barriers, with 3 F1 barriers. For all no, output power is maximized at intermediate-

strength coupling. The peak in output power is by far the most pronounced when no = 3

(orange circles), when the energy barriers in Fo and F1 align and hence the trade-off is

greatest between minimizing slip and loosening coupling sufficiently to capitalize on random

fluctuations. When no 6= n1, not all landscape barriers align with a landscape barrier of

the other subsystem, leading to smaller effective barriers compared to the infinite-coupling

limit. Smaller peaks are easier to jump over, consequently they do not restrict the optimal

coupling strength to the same degree.
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Barrier heights

Once the barrier heights are sufficiently large to (in combination with tilts from driving

forces) prevent any significant fraction of back steps, the output power is simply proportional

to the rate of forward steps, and hence proportional to the exponential of the barrier height,

exp
[
−βE‡

]
. In this regime, the output power of any machine (regardless of driving forces and

coupling strength) decreases with barrier height according to the same exponential decay.

Thus once back steps are negligible, the ordering of machines by output power—and more

specifically the coupling that optimizes output power—does not vary with barrier height.

This physical intuition can be confirmed for tightly coupled subsystems, when the power is

simply calculable by numerical integration (proportional to Eq. (S9)), permitting systematic

exploration of its dependence on barrier height.

Figure S6 shows that beyond ∼ 8kBT barriers, systems with all examined variations of

driving forces (for no phase offset, n = 3 states) have reached the regime of simple exponential

dependence on barrier height. Thus while the quantitative power-maximizing coupling may

change somewhat with barrier height as it increases above 2 kBT (already seen graphically

in Fig. 3 in the main text), the qualitative findings are likely robust to such variation.
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Figure S6: Output power as a function of barrier height βE‡ = β(Eo + E1) for the tightly
coupled system. Different greyscale shades represent different ratios −µH+/µATP of driving
forces (corresponding to the columns in Fig. 3 of the main text), and different linestyles
represent different proton driving forces βµH+ (corresponding to the rows in Fig. 3 of the
main text). Colored lines indicate barrier heights explored in the main text: βEo = βE1 = 0
(dark blue), 2 (orange), or 4 (light blue).
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