Supporting Information

Structural, Electronic and Catalytic Modulation of Chelating Pyridylideneamide Ruthenium(II) Complexes

Miquel Navarro,[†] Candela Segarra,[†] Tim Pfister, [†] Martin Albrecht^{*,†}

[†] Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH–3012 Bern, Switzerland.

E-mail: martin.albrecht@dcb.unibe.ch

1. Transfer Hydrogenation of Complex 3a-e	S2
2. Crystal structure determinations	
3. NMR spectra of all new compounds	
4. CV plots	S16
5. References	S18

1. Transfer Hydrogenation of Complex 3a-e

entry	time/h	conversion /% ^b				
		3a	3b	3c	3d	3 e ^{<i>c</i>}
1	0.5	15	9	5	12	9
2	1	40	13	11	22	14
3	2	71	15	20	35	25
4	4	99	19	39	49	43
5	6	n.d. ^d	24	55	56	n.d.
6	8	n.d.	30	67	61	65
7	24	n.d.	45	96	97	88

Table S1. Transfer hydrogenation of benzophenone with Ru-PYA iridium complexes 3a-e.^a

^{*a*} General conditions: benzophenone (1.0 mmol), KOH (50 μ L, 2M in H₂O, 0.1 mmol), hexamethylbenzene (0.16 mmol), ruthenium complex (0.01 mmol), ^{*i*}PrOH (5 mL), reflux temperature. ^{*b*} determined by ¹H NMR spectroscopy (error ±3%) with hexamethylbenzene as internal standard; n.d. = not determined. ^{*c*} data from reference S1. ^{*d*} not determined.

Figure S1. First-order fit of transfer hydrogenation with different concentrations of complex 3d (2 mol% green; 1 mol% red; 0.5 mol% black; [S] = substrate concentration).

Figure S2. Second-order fit of transfer hydrogenation with different concentrations of complex **3d** (2 mol% green; 1 mol% red; 0.5 mol% black; [S] = substrate concentration).

2. Crystal structure determinations

	3 a	3b	3c	3d ^{<i>a</i>}	3e ^b
Cα–Cβ	1.366(4)	1.366(3)	1.368(4)	1.370(4)	1.3669(18)
	1.365(4)	1.372(3)	1.373(4)	1.371(5)	1.3756(17)
				1.368(5)	
				1.375(5)	
Cβ–Cγ	1.411(4)	1.404(3)	1.411(4)	1.401(4)	1.4046(18)
	1.411(4)	1.410(3)	1.412(4)	1.409(4)	1.4057(16
				1.406(4)	
				1.404(5)	
N _{РҮА} –Сү	1.382(3)	1.389(2)	1.385(4)	1.391(4)	1.3900(15)
				1.388(4)	
O-C-N-Ru	177.237	178.504	177.906	171.642	176.194
				-169.940	
Ru–N–Сү–Сβ	-30.710	40.236	-32.961	148.226	41.331
	146.877	-142.799	143.963	-30.622	-137.336
				51.079	
				-126.265	
С–N–Сү–Сβ	-29.292	39.548	-35.865	41.003	39.380
	152.484	-137.416	147.211	-141.654	-141.954
				-23.023	
				158.129	

Table S2. Selected bond lengths (Å) and dihedral angles (°) pertaining to the PYA ligands environment of the Ru-PYA complexes $3a-e^{a}$

^{*a*} Data from reference S2;^{*b*} Data from data from reference S1.

Table 55. Crystal data and structu	re rennement for compo	und Sa.	
CCDC No.	1989987		
Empirical formula	$C_{23}H_{27}ClN_2O_2Ru$		
Formula weight	499.98		
Temperature	173(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P 21/c		
Unit cell dimensions	a = 16.0919(3) Å	<i>α</i> = 90°	
	b = 11.5737(2) Å	$\beta = 107.795(2)^{\circ}.$	
	c = 12.0498(3) Å	γ= 90°	
Volume	2136.82(8) Å ³		
Ζ	4		
Density (calculated)	$1.554 Mg/m^3$		
Absorption coefficient	0.880mm^{-1}		
F(000)	1024		
Crystal size	0.275 x 0.2207 x 0.1383	3 mm ³	
Theta range for data collection	2.205 to 28.116°.		
Index ranges	-21<=h<=21, -15<=k<=14, -15<=l<=15		
Reflections collected	18220		
Independent reflections	4797 [R(int) = 0.0272]		
Completeness to theta = 25.000°	100.0 %		
Absorption correction	Gaussian		
Max. and min. transmission	0.902 and 0.824		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	4797 / 6 / 285		
Goodness-of-fit on F ²	1.094		
Final R indices [I>2sigma(I)]	R1 = 0.0322, wR2 = 0.0817		
R indices (all data)	R1 = 0.0392, wR2 = 0.0867		
Extinction coefficient	n/a		
Largest diff. peak and hole	1.324 and -0.601 $e.\textrm{\AA}^{-3}$		

Table S3. Crystal data and structure refinement for compound 3a.

1989988		
$C_{24}H_{26}Cl_4F_3N_3O_4RuS$		
752.41		
123(2) K		
0.71073 Å		
Monoclinic		
C 2/c		
$a = 27.8894(6) \text{ Å} \qquad \alpha = 90^{\circ}$		
$b = 11.15180(10) \text{ Å} \qquad \beta = 122.960(2)^{\circ}$		
$c = 22.0852(5) \text{ Å} \qquad \gamma = 90^{\circ}$		
5763.3(2) Å ³		
8		
1.734 Mg/m ³		
1.044 mm^{-1}		
3024		
0.238 x 0.183 x 0.069 mm ³		
1.74 to 28.185°		
-36<=h<=35, -14<=k<=14, -29<=l<=29		
59980		
6749 [R(int) = 0.0332]		
100 %		
Semi-empirical from equivalents		
1 and 0.90948		
Full-matrix least-squares on F ²		
6749 / 114 / 402		
1.038		
R1 = 0.0258, wR2 = 0.0589		
R1 = 0.0299, wR2 = 0.0611		
1.168 and -0.68 e.Å ⁻³		

 Table S4. Crystal data and structure refinement for compound 3b.

CCDC No.	1989989		
Empirical formula	$C_{25}H_{29}Cl_3F_3N_3O_4RuS$		
Formula weight	731.99		
Temperature	123(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	C 2/c		
Unit cell dimensions	a = 30.2627(14) Å	$\alpha = 90^{\circ}$.	
	b = 10.8172(2) Å	$\beta = 134.002(8)^{\circ}.$	
	c = 24.6497(12) Å	$\gamma = 90^{\circ}$.	
Volume	5804.3(7) Å ³		
Z	8		
Density (calculated)	1.675 Mg/m ³		
Absorption coefficient	0.945 mm^{-1}		
F(000)	2960		
Crystal size	0.1393 x 0.0877 x 0.051	19 mm^3	
Theta range for data collection	1.675 to 27.257°.		
Index ranges	-36<=h<=37, -13<=k<=13, -30<=l<=31		
Reflections collected	28334		
Independent reflections	5969 [R(int) = 0.0399]		
Completeness to theta = 25.000°	100.0 %		
Absorption correction	Gaussian		
Max. and min. transmission	0.955 and 0.9		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	5969 / 0 / 366		
Goodness-of-fit on F ²	1.063		
Final R indices [I>2sigma(I)]	R1 = 0.0359, wR2 = 0.0819		
R indices (all data)	R1 = 0.0443, $wR2 = 0.0860$		
Extinction coefficient	n/a		
Largest diff. peak and hole	1.539 and -0.934 e.Å ⁻³		

 Table S5. Crystal data and structure refinement for compound 3c.

_

3. NMR spectra of all new compounds

In some NMR spectra residual solvents from synthetic or purification procedures are present. In all cases, such residual signals were assigned according literature: Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stolts, B. M.; Bercaw, J. E.; Goldberg, K. I.; Organometallics 2010, 29, 2176.

Figure S3. ¹H NMR spectrum of compound 2b.

Figure S4. $^{13}C{^{1}H}$ NMR spectrum of compound 2b.

Figure S5. ¹H NMR spectrum of compound 3a.

Figure S6. $^{13}C{^{1}H}$ NMR spectrum of compound 3a.

Figure S7. ¹H NMR spectrum of compound **3b**.

Figure S8. $^{13}C{^{1}H}$ NMR spectrum of compound 3b.

Figure S9. ¹H NMR spectrum of compound **3c**.

Figure S10. ${}^{13}C{}^{1}H$ NMR spectrum of compound 3c.

4. CV plots

Figure S11. CV plot (potential V vs SCE) of Ru-PYA complexes 3a in dry CH₂Cl₂.

Figure S12. CV plot (potential V vs SCE) of Ru-PYA complexes 3b in dry CH₂Cl₂.

Figure S13. CV plot (potential *V vs* SCE) of Ru-PYA complexes 3c in dry CH₂Cl₂.

Figure S14. CV plot (potential V vs SCE) of Ru-PYA complexes 3d in dry CH₂Cl₂.

Figure S15. CV plot (potential V vs SCE) of Ru-PYA complexes 3e in dry CH₂Cl₂.

5. References

[S1] Donnelly, K. F.; Segarra, C.; Shao, L-X.; Suen, Rachelle, Müller-Bunz, H.; Albrecht, M. *Organometallics* **2015**, *34*, 4076–4068.

[S2] Salzmann, K.; Segarra, C.; Albrecht, M. Angew. Chem. Int. Ed. 2020, DOI: 10.1002/anie.202002014.