Supporting Information

Uncovering the Structural Evolution in Na-Excess Layered Cathodes for Rational Use of an Anionic Redox Reaction

Gwanghyeon Choi, # Jaewoon Lee# and Duho Kim*

Department of Mechanical Engineering, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea

*: These authors contributed equally.

* E-mail: duhokim@khu.ac.kr (Prof. D. Kim).

Figure S1. Atomic structures in the lowest-energy configurations of x = 0.625, 0.75,

0.875, and 1.0 in normalized $Na_{1-x}Ru_{0.5}O_{1.5}$, shown as open circles (2b: blue, 2c: red and

4h: black).

Figure S2. (a) Unit-cell volumes and (b) distances between the Na_{1/3}Ru_{2/3}O₂ layers, as

functions of inverse Na content (x = 0.0 to x = 1.0) in normalized Na_{1-x}Ru_{0.5}O_{1.5}.

Figure S3. (a) a lattice parameters (b) b lattice parameters (c) c lattice parameters, as

functions of inverse Na content (x = 0.0 to x = 1.0) in normalized Na_{1-x}Ru_{0.5}O_{1.5}

Figure S4. Changes in strain energy as the volume ratio (V_0/V) is varied in Na₁₋ _{*x*}Ru_{0.5}O_{1.5} with x = 0.0, 0.125, 0.5, 0.625, 0.75, and 1.0. The solid lines were fitted by the Birch–Murnaghan equation of states, derived from the total energies by first-principles calculations.

Figure S5. Interlayer O – O bond distance, illustrated as the black dotted line in the

inset figure, between the transition metal layers as functions of inverse Na content ($0 \le x$

 \leq 1.0) in normalized Na_{1-x}Ru_{0.5}O_{1.5}.