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Figure S1. Spectra of the solar simulator (a) and sunlight at sea level (b). 
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Figure S2. TEMPO was added into oxidation reaction mixture of benzylamine by Ag3PO4. HRMS spectra 

were recorded before start of experiment and after irradiation with light for 20 min. At the start of the 

reaction, TEMPO + acetonitrile gives [TEMPO + 2H]+ (a) and after irradiation with light, TEMPO forms 

an adduct with carbon radical species photogenerated from benzylamine (b).1 

a)

b)

[2,2,6,6- Tetramethylpiperidin-1-yl]oxyl radical

[TEMPO + 2H]+ , Mass is 158

[TEMPO + 2H]+ +                            

= 264
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Figure S3. Photographs of Ag3PO4: as-synthesized (a), after catalysis (b) and after regeneration (c).  
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Figure S4. TEM image (a), HR-TEM image (b) and SAED (c) of the Ag3PO4 after catalysis confirming the 

formation of Ag nanoparticles during the photocatalytic reaction. The planes indexed in the SAED pattern 

corresponds to the FCC phase of Ag. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S5. SEM images of regenerated Ag3PO4 after catalysis (a, b). SEM-EDS spectrum of regenerated 

catalyst (c). 
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Table S1: Comparison of benzylamine oxidation activity reported in this study with that of 

other reported catalysts. 

Note: In order to compare the photocatalytic efficiency of our Ag3PO4 nanoparticles, the most 

efficient catalysts for the same reaction from recent literature were selected. Since experimental 

conditions are different in different studies, a strict comparison of the catalytic performance is 

impossible. Therefore, the important reaction parameters such as chemical composition of the 

catalyst, amount of catalyst, reactant amount, solvent, reaction time, reaction temperature and 

reaction atmosphere are described in the table. Most of the studies use an oxygenated atmosphere 

as oxidant to carry out this selective oxidation reaction, this requires a special reaction set-up, 

flowing of oxygen in the reaction medium of a sealed vessel. Also seen in the table are a few 

studies where air is used instead of oxygen. However in the air-reactions, despite using a larger 

amount of catalyst and lower reactant quantity, the reactions were quite slow. In this context, we 

use only atmospheric air as oxidant without purging any external source of oxygen in this work. 

In addition, high reaction temperature has also been shown to improve the yield. Entries 7-11 in 

the table demonstrate the requirement of high reaction temperature for this conversion, while in 

this study, we carried out reaction at room temperature. In summary, even though an exact 

comparison is not possible, one can clearly see from the following table that even using ambient 

reaction conditions, the performance of the Ag3PO4 nanoparticles are quite higher than the other 

state-of-the-art catalysts. 
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Sr. 

No. 

Catalyst Catalyst 

Amount 

Amt.of  

BA 

(mmol) 

Time Temp

. (◦C) 

O2/air Solvent Conv. 

(%) 

Select. 

(%) 

Ref. 

1. Ag3PO4 25 mg 1 40 

min 

r.t. air AcN 95 >99 Our work 

2. BiVO4/g-C3N4 20 mg 0.35 16 h  r.t O2 AcN 87.3 100 2 

3. Truxene 

conjugated 

polymer 

10 mg 0.5 4 h 35 O2 AcN >99 91 3 

4. CdS 

nanosheets 

8 mg 0.1 4.5 h r.t O2 DMF 99 >99 4 

5. CuWO4 20 mg 0.5 180 h r.t. O2 AcN 93 99 5 

 

6. WS2 

nanosheets 

- 0.1 30 h 50 O2 AcN 90 95 6 

7. Au/CeO2 - 0.2 6 h 100 O2 1,4 

dioxane 

96 97 7 

8. g-C3N4 50 mg 1 3.5 h 80 O2 AcN 99 99 8 

 

9. Au/Al2O3 100 mg 0.20 24 h 100 O2 toluene 92 - 9 

10. Fe based MOF 75 mg 4.8 24 h 100 O2 - 67 97 10 

11. Au NPs/SBA-

NH2 

30 mg 0.4 24 h 100 O2 toluene 90 - 11 

12. [Au25]/TiO2 10 mg 0.2 1.5 h r.t O2 AcN 98 99 12 

 

13. TiO2 10 mg 0.1 9 h - O2 H2O 81 63 13 

 

14. LDH 20 mg 0.2 5 h - air AcN 100 97  14 

15. Cu/graphene 100 mg 1 6 h 40 O2 Ethanol 99 93  15 

 

16. BiOBr 100 mg 0.1 14 h r.t air AcN 100 100 16 

 

17. HNb3O8 20 mg 0.25 6 h r.t air AcN 95 98.9 17 

18. Nb2O5 100 mg 5 50 h r.t O2 benzene >99 97 18 

 

19. BiVO4 20 mg 0.35 16 h - O2 AcN 89 89 19 

20. AgI/AgVO3 50 mg 0.25 12 h - air AcN 88.2 96 20 
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Table S2: IR radiation effect and temperature variation during benzylamine oxidation 

reaction using Ag3PO4: Since solar light also contains IR radiation and the benzyl amine 

oxidation may not be a purely photocatalytic process, we carried out the following experiments 

that suggested that reaction indeed goes through photocatalytic process and does not involve 

thermo-induced photocatalytic process. We constantly checked the reaction temperature during 

photo-oxidation reaction and found that reaction temperature was between 30-32 ᴼC (obtained 

temperature variation data with time shown in table S2 below) 

Table S2: Recorded temperature of the reaction medium during the photo-oxidation reaction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reaction time 5 min 10 min 15 min 20 min 30 min 40 min

Temperature (ᴼC) 30 31 30 31 32 31
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Note S1: Calculation of Apparent Quantum Efficiency (AQE): We calculated the AQE for 

photocatalytic benzylamine oxidation by carrying out the reaction under solar simulator spectra (Verasol 

Newport, spectrum given in Fig. S1a) with conversion of 95% within 40 min. We calculated the overall 

efficiency by counting the number of incident photons in full wavelength range (400-1000 nm). We have 

also calculated the efficiency in different wavelength region i.e. 400-500 nm, 500-600 nm, 600-700 nm and 

700-800 nm by calculating number of incident photons in the respective regions. In order to calculate AQE 

by using natural sunlight, we carried out the reaction in direct sunlight (solar spectrum at sea level is given 

in Fig. S1b) with conversion of 93% within 40 min. The apparent quantum efficiency calculated by us is 

smaller than the actual quantum efficiency because the number of absorbed photons is always smaller than 

the number of incident photons.21 The incident power on the sample is given as: 

Pincident = ρincident (λ) x Asample      (1) 

Where, Asample is the area exposed to incident light (12.56 cm2 in solar simulator and 15.89 cm2 in direct 

sunlight), ρincident (λ) is the incident power on the sample corresponding to photon of wavelength λ.  

The incident powers on the sample by using solar simulator was estimated to be 732, 135, 151, 142 

and 117 mW in the wavelength range of 400-1000 nm, 400-500 nm, 500-600 nm, 600-700 and 700-800 nm 

respectively. By using solar spectrum, incident power on sample was estimated to be 919 mW in 400-1000 

nm wavelength region. The number of incident photons per second, as a function of wavelength can be 

expressed as: 

                                                                𝑁𝑝ℎ(𝜆) =
𝜌𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡(𝜆)

𝐸𝑝ℎ(𝜆)
                                                           (2)  

Where Eph(λ) = hc/λ is the photon energy for the corresponding wavelength. For example, the total number 

of photons incident on the sample per second within wavelength range of 400-1000 nm can be calculated 

as:  

                                         𝑁𝑝ℎ,𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡(400 − 1000) = ∫
𝜌𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡(𝜆)×𝜆

ℎ𝑐

1000

400
𝑑𝜆                                (3) 

The AQE can be derived from the following equation: 

                          𝐴𝑄𝐸 = 𝑛(𝑁𝑜. 𝑜𝑓𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑜𝑟ℎ𝑜𝑙𝑒) ×
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑖𝑛𝑒 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑝ℎ𝑜𝑡𝑜𝑛𝑠
× 100 (%)               (4) 

For benzyl amine oxidation, n = 2. 

 

Therefore, AQE in the 400-1000 nm range using solar simulator:  
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𝐴𝑄𝐸 = 2 ×
0.00095 

0.00987
× 100(%) 

                                                                = 19.25 % 

Similarly, for 400-500, 500-600, 600-700 and 700-800 nm ranges, the calculated AQE are 12, 4.16, 2.13 

and 0.01% respectively (Fig. 8a in the main manuscript). 

AQE in the 400-1000 nm range while using direct sunlight:  

𝐴𝑄𝐸 = 2 ×
0.00093 

0.01244
× 100(%) 

                                                                = 14.9 % 

The variation (slight reduction) in the quantum efficiency under natural solar light may be due to (i) a 

modified solar spectrum than the ideal one we have used and/or (ii) less number of high energy photons in 

the 400-500 nm range.  
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Note S2: Proposed benzylamine oxidation reaction mechanism: As we discussed in the main 

manuscript that both photogenerated electrons and holes are responsible for this oxidation reaction 

by doing control experiments using radical scavengers. Since two holes and electrons are used for 

this amine oxidation reaction, the corresponding elementary steps for the reaction scheme 

proposed in main manuscript (Scheme 1) are as follows: 

i) hν-1 + Ag3PO4                                           Ag3PO4 + e
-
 (*) + h

+
(*) 

ii) O2 + (*)                           O2 (*) 

iii) O2 (*) + e
-
 (*)                         O2

.-
 (*) 

iv) Ph-CH2-NH2 + (*)                          Ph-CH2-NH2 (*) 

v) Ph-CH2-NH2 (*) + h
+
 (*) + O2

.-
 (*)                            Ph-C

.
H-NH2 (*) + HOO

.
 (*) 

vi) hν-2 + Ag3PO4                                            Ag3PO4 + e
-
 (*) + h

+
(*) 

vii) Ph-C
.
H-NH2 (*) + HOO

.
 (*) + h

+
 (*)                          Ph-C

+
H-N

.
H (*) +H2O2(*) 

viii) Ph-C
+
H-N

.
H (*) + e

-
 (*)                        Ph-CH=NH (*)  

ix) Ph-CH=NH (*) + Ph-CH2-NH2 (*) + H2O2 (*)                           Ph-CH=N-CH2-Ph + NH3 
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Figure S6: The different amine oxidation products obtained during this study and the corresponding NMR 

spectra: 

(a) N-benzylidene-1-phenylmethanamine  

1H NMR (400 MHz, CDCl3): δH 8.43 (s,1H ), 7.82-7.80 (m,2H), 7.45-7.28 (m,8H), 4.86 (s,2H)  

 

 

 

 

 

 

 

 

 

(b) N-benzylidene-1-phenylmethanamine  

13C NMR (400 MHz, CDCl3): δC 162.0, 139.2, 136.1, 130.8, 128.6, 128.5, 128.2, 128.0, 127.0, 65.0.  
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(c) N-(4-trifluoromethyl)benzylidene)-1-(4(trifluoromethyl)phenyl)methanamine  

1H NMR (400 MHz, CDCl3): δH 8.49 (s,1H ), 7.93 (d,2H), 7.72-7.63 (m,4H), 7.50 (d,2H), 4.92(s,2H)  
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(d) N-(4-fluorobenzylidene)-1-(4-fluorophenyl)methanamine 

1H NMR (400 MHz, CDCl3): δH 8.37 (s,1H ), 7.81-7.78 (m,2H), 7.33-7.30 (m,2H), 7.15- 7.03 (m,4H), 4.79 

(s,2H)  
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(e) N-(4-chlorobenzylidene)-1-(4-chlorophenyl)methanamine 

1H NMR (400 MHz, CDCl3): δH 8.36 (s,1H ), 7.74-7.72 (m,2H), 7.44 (d,2H), 7.30- 7.27 (m,4H), 4.79 (s,2H)  

 

 

 

 

 

 

 

 

 

 

(f) N-(4-methylbenzylidene)-1-(p-tolyl)methanamine 
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1H NMR (400 MHz, CDCl3): δH 8.36 (s,1H ), 7.69 (d,2H), 7.25-7.16 (m,6H), 4.79(s,2H), 2.40 (s,3H), 2.36 

(s,3H)  

 

 

 

 

 

 

 

 

 

 

(g) N-(4-tert-butyl)benzylidene)-p-(tert-butyl)benzylamine  
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1H NMR (400MHz, CDCl3): δH 8.41 (s,1H ), 7.77-7.75 (m,2H), 7.48-7.26 (m,6H), 4.82(s,2H), 3.87 (s, 2H), 

1.36-1.31 (s, 17H)  
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