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DFT calculations. Calculations were performed in Quantum Espresso (QE)2 using

an LDA functional. The bilayer potential and the six layer first-principles transformations

were obtained with a cutoff of 80 Ry, a k-grid of 56× 56× 1 and an electronic temperature

(Fermi-Dirac smearing) of 284 K. The energies considered in this work are always in meV

per interface atom. This means that the total energy of the system is divided by 2, whether

the number of layers is 2 or 6 (which permits a direct comparison between energies of both

systems). In each system, the energy is set to 0 at the relative position where the energy

is the lowest. To converge the energy differences of Table S1 with a precision below 0.01

meV/atom, we used an energy cutoff of 120 Ry and an electronic grid of 80× 80× 1. In the

rvv10 calculations of Figure S5, 100 Ry were used.

The most important parameter in the calculations is basically the small barrier VSP of

Figure 1a between the two minima, since it determines the amount of stress necessary to go
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from one local minimum to another. The value of VSP can be expected to be somewhat accu-

rate if the curvature around the minima is accurate. The curvature is directly proportional

to the frequency squared of the shear mode LO’ at Γ (this is the mode in which layers move

in the plane in opposite directions).3 Bulk experimental values of the shear frequency vary

between 42 cm−1 and 45 cm−1(ref. 4). This is in good agreement with the value that results

from fitting a parabola close to m1 in Figure 1a and considering nearest neighbors for the

bulk value, 42 cm−1. The curvature of other functionals like rvv10 (ref. 5), which includes

van der Waals, is actually lower in our calculations, so they agree less well with experiments

(see Figure S5). In previous works, rvv10 also gives a lower frequency than LDA.6

To be confident that it is sufficient to consider the 2 layer potential in our analysis, we

considered a similar calculation, but with 6 layers (dotted-blue line in Figure S4) instead

of 2. In each calculation, the xCM and yCM of each of the three upper layers was moved

with respect to the three lower layers, and the system was relaxed. This corresponds to a

generalized stacking fault energy.7 The curves are very similar, and the energy difference

between the minima is about 6% of VSP, so the transformations could be analyzed in terms

of the bilayer potential. Indeed, the curves in Figure 2 are almost identical. Also, the value

obtained for the stacking fault energy, 1.58 meV/atom, compares well with 1.53 meV/atom

obtained with RPA.8 A detailed comparison is included in Table S1.

Mechanical model. Let us label Li the ith layer from the bottom to the top, and let

us consider that a force is applied to the right on the upper layer L6, as in the top part of

Figure 1c. First, L6 moves from B to C without resistance, where it locks with L5. Then,

it pushes L5 from A to B, which in turn pushes L4 from B to C. The lower layers have

not moved yet. In the next step, L2 and L3 move as well. The transformation is (labeling

always from bottom to top): ABABAB→ABABAC→ABACBA→ACBACB. If the direction

is reversed, the steps of the transformation are: ABABAB→ABABCA→ABCABC. In both

cases, RG is obtained.
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Transformation calculations. As stated in the main text, in each step, the upper

layer LN is moved in the direction θ by a fraction d/Nstep of the bond length d (and relaxed

in the perpendicular direction). The center of mass of the lower layer is fixed, and the

intermediate layers are fully relaxed (the same applies in the Stability of RG section below).

Each intermediate layer i = 2, .., N − 1 is actually moved as well in [(i− 1)/(N − 1)]d/Nstep,

giving a configuration closer to the equilibrium position. In addition, each intermediate

layer is displaced by a relatively large d/20 in the perpendicular direction, to smoothen the

asymmetry introduced by the displacement of the upper layer. In this way, different layers

move in the perpendicular direction at the critical stress, as opposed to only the upper layer

(layers are equivalent in our model and small fluctuations in position should change the layer

that jumps in different calculations).

A careful treatment is also needed at θ = 0◦. There is a bifurcation of behavior at the

critical stress: a layer jumps in the perpendicular direction in −a/2 for θ < 0, and a/2 for

θ > 0. So the result of Figure S1 actually corresponds to θ = 2◦, to avoid an artificial

behavior at θ = 0◦ (θ = 2◦ can be made smaller by increasing Nstep and reducing the

displacement d/20 in the perpendicular direction).

Stability of RG. As pointed out in the main text, the most convenient direction to

obtain RG is an armchair direction (there are two inequivalent ones, θ = 0◦ and θ = 180◦,

that give ACB and ABC stacked RG, respectively). After RG is formed, or if is obtained for

example from exfoliated flakes like in ref. 1, it is of interest to know how stable it is when

applying shear along different directions (which occurs, for example, when transfering it to

a substrate).

To study this, we use the pairwise model and 20 layers of ACB-RG as a starting structure.

The upper layer is moved a fixed total amount of about 10d (14.4 Å) along different θ. We

define a rhombohedral fraction Rs (see details below), which determines the rhombohedral

character of a flake. It is higher when its absolute value is closer to 1: it is 1 when the

stacking is ACB, -1 when it is ABC. Other configurations, like random stacking or BG, are
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closer to 0.

Calculations are performed as in the previous section, with the only difference that the

upper layer is displaced in smaller steps of d/24. As mentioned in the main text, there

are two inequivalent armchair directions, which we refer to as preserving (θ = 0◦) and

destroying (θ = 60◦) directions. If the starting structure is ABC instead of ACB stacked,

the preserving and destroying directions are reversed. Results can be seen in Figure S1.

θ = 0◦ corresponds to the curve after 3d in Figure 2a, for which the rhombohedral order is

kept (Rs = 1). The opposite direction, θ = 180◦ (equivalent to θ = 60◦), corresponds to the

reverse transformation, in which rhombohedral order is gradually lost (Rs decreases instead

of increasing).

For 0◦ ≤ θ < 30◦, the stacking sequence remains rhombohedral or one sliding step away,

resulting in Rs > 0.9. At θ = 30◦ (zigzag) there is a discontinuity, since Rs = 0.94 at

θ = 29◦, while Rs = 0.52 at θ = 31◦. For 31◦ ≤ θ ≤ 60◦, Rs varies between 0.50 and 0.52.

Surprisingly, rhombohedral order is gradually destroyed for any angle in this range, just as

for θ = 60◦.

Thus, if starting from BG, there are two reasons of why an armchair direction is the most

convenient direction to apply shear stress: (i) it has the largest difference between the small

and large critical stress, making it easier to avoid the continuos sliding region of the phase

diagram; (ii) in the stability analysis, Rs has the highest value. If in an experiment the

starting structure is RG, the appropriate armchair direction would have to be determined.

In ref. 1, it is observed that the armchair direction destroys rhombohedral order. How-

ever, a distinction between the two type of armchair directions is not made, and stress could

have been applied in the destroying direction. Also, it is not known what is the magnitude of

the applied shear stress, or the precision of the transfer angle. If there are sign fluctuations

in the transfer process, the armchair direction would destroy RG, while the zigzag direction

might preserve it, since 30◦ and −30◦ are equivalent (θ = 30◦ is in the middle of θ = 0◦ and

θ = 60◦, which create and destroy ACB order, respectively, and could intuitively be useful to
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preserve the existing stacking sequence as mentioned in ref. 1). With regards to our model,

a more detailed analysis that takes into account temperature and dynamical effects could

give a smoother behavior around the zigzag direction. However, this is beyond the scope of

our work.

Stability of RG: Rhombohedral fraction. For a given stacking sequence, let us assign

+1 or -1 to the interface between consecutive layers in the following way: +1 for layers

in positions AC, CB, BA and -1 for CA, BC, AB. For example for N = 7, ACBACBA →

+1+1+1+1+1+1, while ABABABA→ -1+1-1+1-1+1. Adding these values and dividing by

N − 1 gives Rs. So for ACBACBA, Rs = 1, and for ABABABA, Rs = 0. In general, Rs = 1

for ACB stacking, and Rs = 0 for AB stacking if N is odd (if N is even, Rs = −1/(N − 1)

for AB stacking, 1/(N − 1) for BA stacking, the closest possible values to 0). Equivalently,

Rs can be defined as Rs = 1− 2ns/(N − 1), where ns is the number of layers that can slide

in +y (with a small critical stress) relative to the layer below.

To obtain Figure S1, every time the force drops, the structure is relaxed and Rs is

determined. Then Rs is averaged. This procedure is repeated 50 times for each angle, and

a final averaged Rs is calculated.

Fourier interpolation. To obtain the bilayer potential at an arbitrary r point as in

Figure 3a (see coordinate system there), and to then obtain the phase diagram, the potential

was first calculated at a set of N discrete points ri = (xCM,i, yCM,i) of the upper layer within

a primitive cell (separated by a/15 along the lattice vectors, with a = 2.46 Å the length

of the lattice vectors, totaling N = 225). As mentioned earlier, the interlayer distance and

relative coordinates were relaxed. Let G be a set of N reciprocal lattice vectors around the

origin with the symmetry of the crystal. Then, we can write
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Figure S1: Rhombohedral fraction Rs as a function of the angle of the applied stress, starting from
N = 20 layers of ACB-RG, which has Rs = 1. BG has Rs = 0 and ABC-RG Rs = 1. When applying
shear to RG, some of the rhombohedral order can be lost (layers are not locked anymore). There are
two armchair directions, θ = 0◦ in blue and θ = 60◦ in red, with 120◦ periodicity. Zigzag directions
(θ = 30◦, 90◦, ..., 330◦) are all equivalent. θ around 0◦ is the most stable direction, with Rs = 1.00.
For 0◦ < θ < 30◦, the structure is RG or one sliding step away. At the zigag direction there is a
discontinuity, and rhombohedral order gets gradually destroyed at 30◦ < θ ≤ 60◦. The other angles can
be determined from symmetry considerations. Angles in the blue areas preserve rhombohedral order to
a high degree, while angles in the red areas destroy it.

V (r) =
∑
G

VGe
iG.r

with VG =
1

N

∑
ri

V (ri)e
−iG.ri

(1)

where r can take any value.

Hydrostatic pressure. In order to obtain a phase diagram as in Figure 3b when there

is an external pressure P , we have to add an additional term to the enthalpy H defined

earlier, resulting in the new enthalpy

H(r) = V (r)− τττ · rA+ PzA, (2)
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Figure S2: Shear stress as a function of the displacement of the upper layer for a system of 20 layers.
The starting configuration is RG, and the angles are 29◦ (black) and 31◦ (red). For θ = 29◦, there are
two type of peaks, with slighlty different heights. When the structure relaxes to RG, the peak is slightly
higher (large critical stress), and it is lower when it does not (small critical stress). In the latter case,
the structure is only 1 sliding step away from RG. In Figure 2, for θ = 0◦ and θ = 15◦, these values
differ more, while all peaks have the same height at θ = 30◦ (barriers b1 and b2 are equivalent). For
θ = 31◦, all peaks correspond to the low critical stress and have the same height, as the lower value of
the black curve. At the positions where the black and red peaks overlap, it can be seen that the red
peak is slightly lower. Rhombohedral order is gradually destroyed, just as it happens for θ = 60◦. The
critical values here, of around 0.25 GPa, can also be observed in the phase diagram of Figure 3.

where z is the interlayer distance of the center of mass at pressure P .
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Figure S 3: a, Change of yCM and xCM of each layer, as a function of the center of mass position
yCM of the upper layer (L6), for the 6 layer pairwise model calculation (see Figure 2a). Starting from
ABABAB, the upper layer is “pushed” along the bond direction: 1/12 of the bond length d is added to
yCM of the upper layer in each step, and then the structure is relaxed. The relaxed coordinates are used
in the subsequent calculation. In the first sliding steps, layers only move in y. After RG is formed, stress
increases until the upper layers jumps in x in a/2. b, Analogous plot, with θ = 15◦. In this case, the
structure does not remain fully rhombohedral after the jump in x, but is soon recovered after a sliding
step in y.
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Figure S4: Full-black: Energy of the bilayer system along the armchair direction. Same as in Figure 1a.
Dotted-blue: Similar calculation with 6 as opposed to 2 layers. The center of mass of the lower layers
is fixed in the configuration ABA in all calculations, while the upper 3 layers move (the center of mass
of each layer is fixed in each calculation, while other coordinates are relaxed). Labels m1 and m2

correspond to ABABAB and ABACBC, respectively. The energy difference corresponds to a stacking
fault energy. M corresponds to ABAACA. The similarity between the curves indicates that the 2 layer
potential is a good approximation to analyze how shear affects the stacking order. See Table S1 for a
more detailed comparison.
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Figure S5: Energy of the bilayer system along the armchair direction. Full-black: LDA relaxed calculation
(same as Figure 1a). Dashed-red: Fixed z (at the relaxed value of the AB configuration). Dotted-blue:
Relaxed rvv10. Although in the AB-AC region the agreement is good, the disagreement between both
curves increases as the configuration approaches AA. This is consistent with Figure S6, which shows the
variation of the interlayer distance zCM. zCM is 3.38 Å at the small barrier, close to 3.33 Å at AB, while
at AA is 3.60 Å. Thus, it is important to relax the configuration. Otherwise, the potential differences
are artificially high.
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Figure S6: Interlayer distance of the bilayer system along the armchair direction, for various hydrostatic
pressures. Full-black: P = 0. Dotted-blue: P = 1 GPa. Dashed-red: P = 2 GPa.
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Figure S7: Plots analogous to those of Figure S4 at varying pressures. Full-black: P = 0 (same as
Figure 4). Dotted-blue: P = 1 GPa. Dashed-red: P = 2 GPa. Figure S5 shows that fixed z close to
AA corresponds to artificial pressures of over 1 GPa.
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Figure S8: Phase boundaries at different hydrostatic pressures. For each color, the lower line corresponds
to the border between the blue and green region of the phase diagram (Figure 3b), and the upper curve
to the border between the green and orange regions. Blue: P = 0 (same as in Figure 3b). Red: P= 2
GPa. In this range of pressures, the values of the curves at θ = 0◦ increase linearly with pressure.
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Figure S9: Shear stress on the upper layer as a function of yCM of the upper layer. The jump of stress,
as sliding steps take place, decreases with the number of layers. The jump is also smaller after RG
is formed. This can be useful to apply a less varying and more controllable stress. If for example a
cantilever is used to move the upper layer, the number of layers of the sample would have to be taken
into account to decide on its optimal elastic constant. It can also be seen how the position of the first
jump increases linearly with the number of layers.

Table S 1: Comparison between the 2 layer potential and the 6 layer calculation of Figure S4, and
previous works. Refs. 7 and 8 use the adiabatic-connection fluctuation-dissipation theorem within the
random phase approximation (ACFDT-RPA). Ref. 9 uses anisotropic elasticity theory, revised values for
the elastic constants and the experimental data of refs. 10 and 11, to obtain an average stacking fault
energy of 0.14 meV per interface atom, the same value as the RPA calculation. The difference between
the minima (stacking fault energy) is small compared to the barrier VSP separating them, which implies
the 2 layer potential provides a good approximation to study the transformation through shear.

Energy (meV/atom)
2 layer

potential
6 layer

potential
Previous

works
Stacking fault

Bernal
0 0.10

0.14 (RPA)7

0.14 (Exp.)9

Small barrier VSP 1.58 1.59 1.53 (RPA)8

Large barrier VAA 9.7 9.5
8.8 (RPA)8

12.4 (QMC)12
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