## Supporting information for:

## Synthesis and Solid State Dynamics of a Crystalline Steroid Molecular Rotor Without the Alkyne Axle: Steroid Dimers Based on a 1,4-Di(1,3-dioxan-2-yl)benzene Moiety

Katherine Vargas-Romero, Fátima C. Martínez-Torres, Andrés Aguilar-Granda, Salvador Pérez-Estrada, Marcos Flores-Alamo, Braulio Rodríguez-Molina,\* Martín A. Iglesias-Arteaga\*

## Index

| NMR Spectra (20S)-5α-pregnan-3β,16β,20-triol 3-monoacetate (17)                |      |  |  |
|--------------------------------------------------------------------------------|------|--|--|
| <sup>1</sup> H NMR                                                             | S-3  |  |  |
| <sup>13</sup> C NMR                                                            | S-5  |  |  |
| NMR Spectra Dimer SR-18                                                        | S-7  |  |  |
| <sup>1</sup> H NMR                                                             | S-8  |  |  |
| <sup>13</sup> C NMR                                                            | S-10 |  |  |
| HSQC                                                                           | S-12 |  |  |
| HMBC                                                                           | S-13 |  |  |
| NOESY                                                                          | S-14 |  |  |
| NMR Spectra Dimer <i>RR</i> -18                                                | S-15 |  |  |
| <sup>1</sup> H NMR                                                             | S-16 |  |  |
| <sup>13</sup> C NMR                                                            | S-18 |  |  |
| HSQC                                                                           | S-20 |  |  |
| HMBC                                                                           | S-21 |  |  |
| NOESY                                                                          | S-22 |  |  |
| Figure S1 Crystal structures of steroid dimers SR-18 and RR-18                 | S-23 |  |  |
| Table S1. Crystal data and structure refinement for compounds SR-18 and RR-18. |      |  |  |
| Figure S2. Overlay of the two symmetry independent molecules in the asymmetric |      |  |  |
| unit of <b><i>R</i>R-18</b>                                                    | S-25 |  |  |
| Figure S3. Alternative dynamic model for the motion of <i>RR</i> -18           | S-26 |  |  |



(20*S*)-5 $\alpha$ -pregnan-3 $\beta$ ,16 $\beta$ ,20-triol 3-monoacetate (17)



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound **17** 





|                                                                                                    |                                                                                                             |                                                                                                     |                                                                               |                                          | ~73.65<br>~73.07<br>—66.53 | 63.00<br>54.17<br>53.87<br>44.59                                    |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------|----------------------------|---------------------------------------------------------------------|
|                                                                                                    | ĸŧĔ <sup>4</sup> ĸħĸĸġŊŧĦŦĸĸŎijĸĸĸĸŧġĸĸŶ₩ĸſĸĸĿţĸŲĨĸIJŶĮŔŦijĸĸĸĮĸġĸŢġĸŗĸĸĿĸġġĸŢġĸŗĸĸĿĿġĨĸġĿŔĸŦĿĸĸŦĨŦĸĸŢſŦĿĸţ | ĸŧĴŶŕŵċĸŗĸŧŧŧĨĨĨĨĨĔĿĿţĊĸĸţŧĸĸŧĬŔŶſţĿŗĸĸţĿţĸŧĔŔĬŔŒŗĬŧĸţŎĸĔĸţŎŢŎĸŎĸĸĸĸĸĿĸŎĬŔ                          | ĸĸŧġĸħijĸĸġŎţŎĸĿŎĬĿĸŢŶĔĿŎĬĿĸŢĬĬĿĿŎĬĸĿĿĿĸĔĿĿţŎĿĿŎĿĿĿŢŎĿĿĿŎĿĿĿŢŎĿĿĿŢŎĿĿĿŢŎĿĿĿŢŎ | \$\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |                            |                                                                     |
| 75 170 165 1<br>97 68<br>68<br>68<br>68<br>68<br>68<br>68<br>68<br>68<br>68<br>68<br>68<br>68<br>6 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                        | 130 125 120 115<br>16:18:<br>16:18:<br>16:18:<br>16:18:<br>10:10:10:10:10:10:10:10:10:10:10:10:10:1 | 5 110 105 100 9<br>f1 (ppm)<br><sup>80</sup><br>27<br>1                       |                                          | 75 70 6                    | 5 60 55 50 45<br>60 10 45<br>11 11 11 11 11 11 11 11 11 11 11 11 11 |
|                                                                                                    |                                                                                                             |                                                                                                     |                                                                               |                                          |                            |                                                                     |
| 41 40 39                                                                                           | 38 37 36 35 34 33                                                                                           | 32 31 30 29 28<br><sup>13</sup> C NMR (100.53 M                                                     | 8 27 26 25 24<br>f1 (ppm)<br>//Hz, CDCl <sub>3</sub> ) spectru                | 23 22 21 20<br>m of compound <b>17</b>   | 19 18 17                   | 16 15 14 13 12<br>S-6                                               |



Dimer SR-18



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound *SR*-18





 $^{13}$ C NMR (100.53 MHz, CDCl<sub>3</sub>) spectrum of compound *SR*-18



<sup>13</sup>C NMR (100.53 MHz, CDCl<sub>3</sub>) spectrum of compound *SR*-18



HSQC (CDCl<sub>3</sub>) spectrum pf compoudn SR-18



NOESY(CDCl<sub>3</sub>) spectrum pf compoudn SR-18



HMBC (CDCl<sub>3</sub>) spectrum pf compoudn **SR-18** 



Dimer RR-18







<sup>13</sup>C NMR (100.53 MHz, CDCl<sub>3</sub>) spectrum of compound **RR-18** 



 $^{13}\text{C}$  NMR (100.53 MHz, CDCl<sub>3</sub>) spectrum of compound **RR-18** 



HSQC (CDCl<sub>3</sub>) spectrum of compound **RR-18** 



HMBC (CDCl<sub>3</sub>) spectrum of compound **RR-18** 



NOESY(CDCl<sub>3</sub>) spectrum of compound **RR-18** 



Figure S-1 Crystal structures of steroid dimers *SR*-18 (A) and *RR*-18 (B) with the thermal ellipsoids drawn at 30% probability.

| Parameter                                | SR-18                                          | <i>RR</i> -18                                  |
|------------------------------------------|------------------------------------------------|------------------------------------------------|
| Empirical formula                        | C <sub>54</sub> H <sub>78</sub> O <sub>8</sub> | C <sub>54</sub> H <sub>78</sub> O <sub>8</sub> |
| Formula weight                           | 855.16                                         | 855.16                                         |
| Temperature                              | 130(2) K                                       | 130(2) K                                       |
| Wavelength                               | 1.54184 Å                                      | 1.54184 Å                                      |
| Crystal system                           | Monoclinic                                     | Triclinic                                      |
| Space group                              | <i>P</i> 2 <sub>1</sub>                        | P1                                             |
|                                          | a = 13.7565(7) Å                               | a = 13.4848(8) Å                               |
|                                          | b = 10.3255(6) Å                               | b = 13.8175(9) Å                               |
| Unit cell dimensions                     | c = 16.8608(7)  Å                              | c = 14.4535(10)  Å                             |
|                                          | $\alpha = 90^{\circ}$                          | $\alpha = 74.959(6)^{\circ}$                   |
|                                          | $\beta = 100.716(4)^{\circ}$                   | $\beta = 88.351(5)^{\circ}$                    |
|                                          | $\gamma = 90^{\circ}$                          | $\gamma = 65.812(6)^{\circ}$                   |
| Volume                                   | 2353.2(2) Å <sup>3</sup>                       | 2363.3(3) Å <sup>3</sup>                       |
| Z                                        | 2                                              | 2                                              |
| Density (calculated)                     | 1.207 Mg/m <sup>3</sup>                        | 1.202 Mg/m <sup>3</sup>                        |
| Absorption coefficient                   | $0.624 \text{ mm}^{-1}$                        | $0.621 \text{ mm}^{-1}$                        |
| F(000)                                   | 932                                            | 932                                            |
| Crystal size                             | 0.370 x 0.140 x 0.060 mm <sup>3</sup>          | 0.410 x 0.290 x 0.150 mm <sup>3</sup>          |
| Theta range for data collection          | 3.817 to 77.853°.                              | 3.607 to 78.091°.                              |
| Index ranges                             | -17<=h<=17, -12<=k<=10, -                      | -16<=h<=16, -17<=k<=17, -                      |
|                                          | 21<=l<=21                                      | 18<=l<=18                                      |
| Reflections collected                    | 45982                                          | 45764                                          |
| Independent reflections                  | 9330 [R(int) = 0.1087]                         | 18197 [R(int) = 0.0766]                        |
| Completeness to theta = $67.684^{\circ}$ | 100.0 %                                        | 100.0 %                                        |
| Refinement method                        | Full-matrix least-squares on $F^2$             | Full-matrix least-squares on $F^2$             |
| Data / restraints / parameters           | 9330 / 1 / 567                                 | 18197 / 3 / 1133                               |
| Goodness-of-fit on F <sup>2</sup>        | 1.040                                          | 1.065                                          |
| Final R indices [I>2sigma(I)]            | R1 = 0.0563, WR2 = 0.1199                      | R1 = 0.0595, wR2 = 0.1210                      |
| R indices (all data)                     | R1 = 0.0869, WR2 = 0.1397                      | R1 = 0.0920, wR2 = 0.1445                      |
| Absolute structure parameter             | 0.13(18)                                       | -0.02(14)                                      |
| Largest diff. peak and hole              | $0.200 \text{ and } -0.263 \text{ e.Å}^{-3}$   | $0.234 \text{ and } -0.343 \text{ e.\AA}^{-3}$ |

Table S-1. Crystal data and structure refinement for compounds SR-18 and RR-18.



**Figure S2.** Overlay of the two symmetry independent molecules in the asymmetric unit of *RR*-18 highlighting the differences in the conformation of the molecules.



Figure S3. Alternative dynamic model for the motion of *RR*-18. The simulated line shapes (dotted red line) do not match the evolution of the experimental <sup>13</sup>C CPMAS (75.47 MHz) peaks at higher temperatures (solid black line).