Supporting Information

Quenching of Singlet Oxygen by Carotenoids via Ultrafast Superexchange Dynamics

Hiroyuki Tamura, Hiroshi Ishikita

Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-

1 Komaba, Meguro-ku, Tokyo 153-8904 Japan

Rotation of π_g^* orbitals of O_2

There is arbitrariness in the rotation of the degenerate π_g^* orbitals (π_y^* and π_z^*) along the bond axis of isolated O_2 . The 1O_2 ($^1\Delta_g$) CASSCF wavefunction with 45-degree rotated π_g^* orbitals is equivalent to the 1O_2 ($^1\Delta_g^*$) wavefunction, and vice versa, as shown below.

The 45 and -45 degree rotated π_g^* orbitals are expressed with the original π_y^* and π_z^* orbitals as follows.

$$\pi_{45}^* = \frac{1}{\sqrt{2}} \pi_x^* + \frac{1}{\sqrt{2}} \pi_y^*, \quad \pi_{-45}^* = \frac{1}{\sqrt{2}} \pi_x^* - \frac{1}{\sqrt{2}} \pi_y^*$$

In the ${}^{1}\Delta_{g}$ configuration, either π_{45} * or π_{-45} * orbital is occupied by two electrons (electrons 1 and 2).

$$\begin{split} &^{1}\Delta_{g} = \frac{1}{\sqrt{2}}\pi_{45}^{*}(1)\pi_{45}^{*}(2) - \frac{1}{\sqrt{2}}\pi_{-45}^{*}(1)\pi_{-45}^{*}(2) \\ &= \frac{1}{\sqrt{2}}\left[\frac{1}{\sqrt{2}}\pi_{x}^{*}(1) + \frac{1}{\sqrt{2}}\pi_{y}^{*}(1)\right]\left[\frac{1}{\sqrt{2}}\pi_{x}^{*}(2) + \frac{1}{\sqrt{2}}\pi_{y}^{*}(2)\right] - \frac{1}{\sqrt{2}}\left[\frac{1}{\sqrt{2}}\pi_{x}^{*}(1) - \frac{1}{\sqrt{2}}\pi_{y}^{*}(1)\right]\left[\frac{1}{\sqrt{2}}\pi_{x}^{*}(2) - \frac{1}{\sqrt{2}}\pi_{y}^{*}(2)\right] \\ &= \frac{1}{\sqrt{2}}\left[\frac{1}{2}\pi_{x}^{*}(1)\pi_{x}^{*}(2) + \frac{1}{2}\pi_{x}^{*}(1)\pi_{y}^{*}(2) + \frac{1}{2}\pi_{y}^{*}(1)\pi_{x}^{*}(2) + \frac{1}{2}\pi_{y}^{*}(1)\pi_{y}^{*}(2)\right] \\ &- \frac{1}{\sqrt{2}}\left[\frac{1}{2}\pi_{x}^{*}(1)\pi_{x}^{*}(2) - \frac{1}{2}\pi_{x}^{*}(1)\pi_{y}^{*}(2) - \frac{1}{2}\pi_{y}^{*}(1)\pi_{x}^{*}(2) + \frac{1}{2}\pi_{y}^{*}(1)\pi_{y}^{*}(2)\right] \\ &= \frac{1}{\sqrt{2}}\left[\pi_{x}^{*}(1)\pi_{y}^{*}(2) + \pi_{y}^{*}(1)\pi_{x}^{*}(2)\right] \\ &= \frac{1}{\sqrt{2}}\left[\pi_{x}^{*}(1)\pi_{y}^{*}(2) + \pi_{y}^{*}(1)\pi_{x}^{*}(2)\right] \end{split}$$

The final expression corresponds to the ${}^{1}\Delta_{g}$ ' configuration consisting of the original π_{y} * and π_{z} * orbitals, where the respective orbitals are occupied by one electron.