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Figure S1. Flow chart of the core algorithm of MULE package. 
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An abridged proof of the ability of the Dijkstra algorithm to identify the true MFEP  

(Continued from the proof in the main text.) Let us note 𝑠  [𝑡 ∈ (0, 𝑛)] the transition state, 

and let us assume that there is only one free-energy barrier along 𝑓(𝑠). Hence, from 𝑠  to 𝑠 , 

𝑊[𝑓(𝑠)] monotonically increases, and from 𝑠  to, 𝑠  𝑊[𝑓(𝑠)] monotonically decreases. After 

exploring 𝑓(𝑠 ) , points adjacent to 𝑓(𝑠 ) , will be added into openList . Since the Dijkstra 

algorithm always extracts the point corresponding to the lowest free energy from openList, there 

is 𝑊[𝑓(𝑠 )]  =  𝑚𝑖𝑛(𝑊[𝑄]), ∀𝑄 ∈ unexplored points adjacent to 𝑓(𝑠 ). Hence, 𝑓(𝑠 ) (𝑖 ∈

[t, 𝑛]) satisfies the requirement of a steepest-descents path. Let us then consider 𝑓(𝑠 ) {𝑖 ∈ [0, 𝑡)}. 

Using exactly the same proving process as that of the main text, it can be guaranteed that there is 

no pathway 𝑔(𝑠)  satisfying 𝐻 < 𝐼 , where 𝐻 = 𝑚𝑎𝑥{𝑊[𝑓(𝑠 )]} = 𝑊[𝑓(𝑠 − )]  and 𝐼 =

𝑚𝑎𝑥{𝑊[𝑔(𝑠 )]} = 𝑊[𝑔(𝑠 − )], {𝑖 ∈ [0, 𝑡)}. Hence, 𝑓(𝑠 ) {𝑖 ∈ [0, 𝑡)} satisfies the requirement 

of a steepest-descents path. Therefore, 𝑓(𝑠) is the union of steepest-descents paths from the saddle 

points to the minima, that is, the true MFEP. 

 

Comparison between MULE (the Dijkstra algorithm) and the string algorithm 

Pros of MULE. The Dijkstra algorithm is parameter-free, and performs consistent, 

reproducible path searches. In contrast, the string algorithm implemented in MEPSearcher and 

NAMD has been shown in a number of cases to depend on the initial guess of the path, as well as 

on tunable parameters, e.g., the number of images along the string. Different settings may lead to 

distinct results when using this algorithm.1,2 Moreover, the Dijkstra algorithm can always identify 

the true MFEP, while the pathway found by the string algorithm is usually an approximation of 

the MFEP due to the limited number of images. 
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Cons of MULE. MULE is developed for post treatments, which implies that a complete free-

energy landscape must be obtained as a preamble to the identification of the MFEP. If one, 

however, wishes to perform on-the-fly MFEP searches, MULE, or the Dijkstra algorithm, is nearly 

serial, while the string algorithm is embarrassingly parallelizable, and, hence, almost surely more 

computationally efficient. 

 

Other differences. The Dijkstra algorithm was originally designed for finding paths in a 

discrete graph. Interpolation of the discrete free-energy landscape is, therefore, not required in 

MULE, though optional if needed. In the string algorithm, however, such an interpolation is almost 

always required to reparametrize the string.3 This difference in interpolation between the two 

algorithms may lead to significantly distinct pathways, as shown in Figure S2. 

 

To highlight the difference between the Dijkstra and the string algorithms, favorable 

pathways underlying the translocation of a chloride ion through a synthetic membrane channel 

were identified by the string algorithm implemented in MEPSeacher 

(https://github.com/chenxin199261/MEPSearcher). Figure S2A showcases a significant difference 

between the pathways found by MULE and MEPSearcher, arising from the interpolation of the 

discretized free-energy landscape by the MEPSearcher, as detailed in Figure S3. Figure S2B 

describes the parameter-dependence of the string algorithm. 
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Figure S2. Predicted MFEPs characterizing the translocation of a chloride ion through a 
transmembrane channel by MULE (black dot), MEPSearcher with 40 beads (red line) and 
MEPSearcher with 80 beads (white line). The difference between the pathways found by MULE 
and MEPSearcher is due to the interpolation of the free-energy landscape by the latter, as depicted 
in Figure S3. 

 

 

Figure S3. Closeup of Figure S2A highlighting the effect of interpolating the free-energy 
landscape by MEPSearcher. The contour map describes the interpolated free-energy map 
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Figure S4. Time evolution of the root-mean-square deviation over the free-energy profiles 
corresponding to Figure 3. WTM-eABF has the best convergence property among all the methods. 
The sampling of meta-eABF is almost the same as fast as WTM-eABF, but the fluctuation of 
biasing forces shown in Figure 3C decrease the quality of the free-energy landscape for a long-
time meta-eABF simulation. Plain ABF and eABF have a smooth and relatively slow convergence 
rate in this case. 

 

 

Figure S5. Distributions of the committor, pA, at the positions near the saddle points around dz = 
-14.3 and dxy = 1.7 for the WTM-eABF simulation characterizing the translocation of a chloride 
ion through a transmembrane channel. The distributions are Gaussian-like with a peak at pA = 0.5, 
suggesting the high reliability of the free-energy calculation and the chosen transition coordinate. 
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Figure S6. Distribution of 𝜓 , 𝜓 , and 𝜓  for metastable states in Figure 6. The results show that 
only one 𝜓 angle rotates accompanied with the change of one 𝜑 angle. Insets: milestone structures 
with superposition of the optimal conformation. 
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Simulation details 

All the simulations were performed using NAMD 2.134 with the latest version of Colvars module.5 

Covalent bonds involving hydrogen atoms were constrained to their equilibrium length employing 

the SHAKE/RATTLE6 and SETTLE7 algorithms. For simulations characterizing aqueous solution, 

the r-RESPA algorithm8 was utilized to integrate the equations of motion with a timestep of 2 and 

4 fs for short- and long-range interactions, respectively. A 12-Å cutoff was introduced to truncate 

van der Waals and short-range Coulombic interactions. The particle mesh Ewald (PME)9 method 

was used to estimate the long-range electrostatic forces. Deca-alanine, N-acetyl-

N’methylalaninamide (NANMA), transmembrane synthetic peptide nanotube and lipids were 

described by the CHARMM force field.10 Alanine tripeptide was modeled by the Amber force 

field.11 Water was characterized by the TIP3P model.12 

 

Isomerization of N-acetyl-N’methylalaninamide in aqueous solution 

Simulation parameters. To investigate the impact of different parameters of biasing potential  

on the convergence of WTM-eABF, we followed the control-of-variables strategy and performed 

a series of simulations using NANMA as a test example. The reaction coordinate model consisted 

of two torsion angles, φ and ψ of the peptide, as illustrated in Figure S7A, and the CZAR estimator 

was used to compute the gradients along them. All simulations can be categorized as three groups. 

In the first group (Figure S7B) different choices of bias temperature were used, while the width 

and initial height of Gaussians were kept at 5.0° and 0.1 kcal/mol, respectively. In the second group 

(Figure S7C) different values of initial Gaussian height were evaluated, while the width of 

Gaussians and the bias temperature were fixed at 5.0° and 4000 K, respectively. The last group 
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assessed various Gaussian widths using the same settings for bias temperature (4000 K) and initial 

Gaussian height (0.1 kcal/mol). 

Results and discussion. The RMSD of resultant PMF in each group with respect to a reference 

from an 500-ns ABF simulation is shown in Figure S7. 

 

Figure S7. (A) Schematic representation of the transition coordinate of NANMA. Rate of 

convergence of WTM-eABF simulations with different (B) bias temperatures, (C) initial Gaussian 

heights and (D) Gaussian widths. 

It can be concluded from Figure S7B that increasing the bias temperature slightly speedup 

the convergence. Nevertheless, as discussed in the manuscript, using the non-tempered parameter 

(ΔT = +∞) is not recommended, and the choices of 4000 K and 8000 K share approximately the 

same convergence rate with the non-tempered case, hence they are suitable for common PMF 

calculations. Inferred from Figure S7C and Figure S7D, increasing the initial height of Gaussians 

and the Gaussian width also accelerate the convergence, but extremely high initial height (h = 1.6 

kcal/mol) and Gaussian width (σ = 20.0 °) can perturb the measurement of average forces, thus 
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yielding instable convergence compared with the moderate choices of h = 0.8 kcal/mol and σ = 

10.0 °. In summary, the parameter set ΔT = 4000 K, h = 0.8 kcal/mol and σ = 10.0 ° can be used 

for mapping the multidimensional PMF along Ramachandran angles of peptides. 
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