S-1

Supporting Information

Phase transitions in the metastable perovskite multiferroics BiCrO₃ and BiCr_{0.9}Sc_{0.1}O₃: a comparative study

João Pedro Cardoso¹, Davide Delmonte², Edmondo Gilioli², Elena L. Fertman³, Alexey V. Fedorchenko³, Vladimir V. Shvartsman⁴, Vaidotas Paukšta⁵, Robertas Grigalaitis⁵, Jūras Banys⁵, Dmitry D. Khalyavin⁶, Joaquim M. Vieira¹, Andrei N. Salak^{*,1}

¹ Department of Materials and Ceramics Engineering and CICECO – Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal

² Institute of Materials for Electronics and Magnetism, 43124 Parma, Italy

³ B. Verkin Institute for Low Temperature Physics and Engineering of NAS of Ukraine, 61103 Kharkov, Ukraine

⁴ Institute for Materials Science and CENIDE – Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, 45141 Essen, Germany

⁵ Faculty of Physics, Vilnius University, LT-10222 Vilnius, Lithuania

⁶ ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire, OX11 0QX, United Kingdom

Figure S1. XRD patterns of as-prepared BiCrO₃ and BiCr_{0.9}Sc_{0.1}O₃ recorded at room temperature. Inset shows the range of the most representative reflection. The strongest reflections of the impurity phases, Bi_2O_3 and $Bi_2O_2CO_3$, are denoted with asterisk and rhomb, respectively.

^{* &}lt;u>salak@ua.pt</u> – corresponding author

Figure S2. The most representative ranges of the temperature XRD patterns of $BiCrO_3$ (a) and $BiCr_{0.9}Sc_{0.1}O_3$ (b) recorded *in situ* upon heating.

Figure S3. PFM images of the poled (+/- 50 V) area in the BiCrO₃ ceramics: at 350 K (a) and 400 K (b).

Figure S4. Temperature derivatives, dM/dT, of the FC and ZFC magnetization curves as a function of temperature for BiCrO₃ (top) and BiCr_{0.9}Sc_{0.1}O₃ (bottom) with the Néel temperature (T_N) and the spin reorientation temperature (T_{sr}) indicated.

Figure S5. Inverse ZFC and FC susceptibility of BiCrO₃ as a function of temperature.

Figure S6. Inverse ZFC and FC susceptibility of BiCr_{0.9}Sc_{0.1}O₃ as a function of temperature.