Catalyst-Free Click Polymerization of Thiol and Activated Internal Alkynes: A Facile Strategy toward Functional Poly(β-thioacrylate)s

${ }^{\dagger}$ State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
${ }^{7}$ State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, China
${ }^{s}$ Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science \& Technology, Clear Water Bay, Kowloon, Hong Kong, China

Table of Contents

Scheme S1. Synthetic route to monomers 2a-c.
Figure S1. IR spectra of monomers $\mathbf{2 b}$ (A) and $\mathbf{1}$ (B) and their polymer P1/2b (C). S3
Figure S2. IR spectra of monomers $\mathbf{2 c}$ (A) and $\mathbf{1}$ (B) and their polymer P1/2c (C). S4
Figure S3. IR spectra of monomers $\mathbf{3 a}$ (A) and $\mathbf{1}$ (B) and their polymer P1/3a (C). S4
Figure S4. IR spectra of monomers $\mathbf{3 b}$ (A) and $\mathbf{1}$ (B) and their polymer P1/3b (C). S5
Figure S5. IR spectra of monomers 3c (A) and 1 (B) and their polymer P1/3c (C). S5

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectra of monomers $\mathbf{2 b}$ (A) and $\mathbf{1}$ (B) and their polymer P1/2b
(C) in CDCl_{3}. The solvent and water peaks are marked with asterisks.

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectra of monomers $\mathbf{2 c}$ (A) and $\mathbf{1}$ (B) and their polymer P1/2c
(C) in CDCl_{3}. The solvent and water peaks are marked with asterisks.

S6
Figure S8. ${ }^{1} \mathrm{H}$ NMR spectra of monomers 3a (A) and $\mathbf{1}$ (B) and their polymer P1/3a
(C) in CDCl_{3}. The solvent and water peaks are marked with asterisks.

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectra of monomers $\mathbf{3 b}$ (A) and $\mathbf{1}$ (B) and their polymer P1/3b (C) in CDCl_{3}. The solvent and water peaks are marked with asterisks.S7

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectra of monomers $\mathbf{3 c}$ (A) and $\mathbf{1}$ (B) and their polymer P1/3c (C) in CDCl_{3}. The solvent and water peaks are marked with asterisks.S8

Figure S11. ${ }^{13} \mathrm{C}$ NMR spectra of monomers $\mathbf{2 b}$ (A) and $\mathbf{1}$ (B) and their polymer P1/2b
(C) in CDCl_{3}. The solvent peaks are marked with asterisks.

Figure S12. ${ }^{13} \mathrm{C}$ NMR spectra of monomers $\mathbf{2 c}$ (A) and $\mathbf{1}$ (B) and their polymer P1/2c (C) in CDCl_{3}. The solvent peaks are marked with asterisks. S9

Figure S13. ${ }^{13} \mathrm{C}$ NMR spectra of monomers $\mathbf{3 a}(\mathrm{A})$ and $\mathbf{1}$ (B) and their polymer P1/3a (C) in CDCl_{3}. The solvent peaks are marked with asterisks.

Figure S14. ${ }^{13} \mathrm{C}$ NMR spectra of monomers $\mathbf{3 b}$ (A) and $\mathbf{1}$ (B) and their polymer P1/3b (C) in CDCl_{3}. The solvent peaks are marked with asterisks. S10

Figure S15. ${ }^{13} \mathrm{C}$ NMR spectra of monomers $\mathbf{3 c}$ (A) and $\mathbf{1}$ (B) and their polymer P1/3c (C) in CDCl_{3}. The solvent peaks are marked with asterisks. S10

Figure S16. DSC curves of $\mathrm{P} \mathbf{1 / 2 a}-\mathrm{c}$ and $\mathrm{P} \mathbf{1 / 3 a}-\mathrm{c}$ measured under nitrogen at a scanning rate of $2{ }^{\circ} \mathrm{C} / \mathrm{min}$.

Table S1. Refractive indices, Abbé numbers and chromatic dispersions of thin films of the PTAs. S11

Scheme S1. Synthetic route to monomers 2a-c.

Figure S1. IR spectra of monomers $\mathbf{2 b}(\mathrm{A})$ and $\mathbf{1}(\mathrm{B})$ and their polymer P1/2b (C).

Figure S2. IR spectra of monomers 2c (A) and $\mathbf{1}$ (B) and their polymer P1/2c (C).

Figure S3. IR spectra of monomers $\mathbf{3 a}(\mathrm{A})$ and $\mathbf{1}(\mathrm{B})$ and their polymer P1/3a (C).

Figure S4. IR spectra of monomers $\mathbf{3 b}(\mathrm{A})$ and $\mathbf{1}(\mathrm{B})$ and their polymer P1/3b (C).

Figure S5. IR spectra of monomers $\mathbf{3 c}(\mathrm{A})$ and $1(\mathrm{~B})$ and their polymer P1/3c (C).

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectra of monomers $\mathbf{2 b}(\mathrm{A})$ and $\mathbf{1}(\mathrm{B})$ and their polymer $\mathrm{P} \mathbf{1} / \mathbf{2 b}(\mathrm{C})$ in CDCl_{3}. The solvent and water peaks are marked with asterisks.

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectra of monomers $\mathbf{2 c}(\mathrm{A})$ and $\mathbf{1}(\mathrm{B})$ and their polymer $\mathrm{P} \mathbf{1} / \mathbf{2 c}(\mathrm{C})$ in CDCl_{3}. The solvent and water peaks are marked with asterisks.

Figure S8. ${ }^{1} \mathrm{H}$ NMR spectra of monomers $\mathbf{3 a}(\mathrm{A})$ and $\mathbf{1}(\mathrm{B})$ and their polymer $\mathrm{P} \mathbf{1} / \mathbf{3 a}(\mathrm{C})$ in CDCl_{3}. The solvent and water peaks are marked with asterisks.

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectra of monomers $\mathbf{3 b}(\mathrm{A})$ and $\mathbf{1}(\mathrm{B})$ and their polymer $\mathrm{P} \mathbf{1 / 3 b}(\mathrm{C})$ in CDCl_{3}. The solvent and water peaks are marked with asterisks.

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectra of monomers $\mathbf{3 c}(\mathrm{A})$ and $\mathbf{1}$ (B) and their polymer P1/3c (C) in CDCl_{3}. The solvent and water peaks are marked with asterisks.

Figure S11. ${ }^{13}$ C NMR spectra of monomers $\mathbf{2 b}$ (A) and $\mathbf{1}$ (B) and their polymer P1/2b (C) in CDCl_{3}. The solvent peaks are marked with asterisks.

Figure S12. ${ }^{13}$ C NMR spectra of monomers $\mathbf{2 c}(\mathrm{A})$ and $\mathbf{1}(\mathrm{B})$ and their polymer P1/2c (C) in CDCl_{3}. The solvent peaks are marked with asterisks.

Figure S13. ${ }^{13}$ C NMR spectra of monomers $\mathbf{3 a}(\mathrm{A})$ and $\mathbf{1}(\mathrm{B})$ and their polymer P1/3a (C) in CDCl_{3}. The solvent peaks are marked with asterisks.

Figure S14. ${ }^{13} \mathrm{C}$ NMR spectra of monomers $\mathbf{3 b}$ (A) and $\mathbf{1}$ (B) and their polymer P1/3b (C) in CDCl_{3}. The solvent peaks are marked with asterisks.

Figure S15. ${ }^{13} \mathrm{C}$ NMR spectra of monomers $\mathbf{3 c}(\mathrm{A})$ and $\mathbf{1}(\mathrm{B})$ and their polymer P1/3c (C) in CDCl_{3}. The solvent peaks are marked with asterisks.

Figure S16. DSC curves of $\mathrm{P} \mathbf{1 / 2 a}-\mathbf{c}$ and $\mathrm{P} 1 / \mathbf{3 a}-\mathbf{c}$ measured under nitrogen at a scanning rate of 2 ${ }^{\circ} \mathrm{C} / \mathrm{min}$.

Table S1. Refractive indices, Abbé numbers and chromatic dispersions of thin films of the PTAs ${ }^{a}$

PTA	$n_{400-1700}$	$n_{632.8}$	n_{1550}	v_{D}	$v_{\mathrm{D}}{ }^{\prime}$	D	D^{\prime}
P1/2a	$1.7638-1.6304$	1.6742	1.6318	15.9	69.0	0.063	0.014
P1/2b	$1.8174-1.6574$	1.6915	1.6581	12.8	126.9	0.078	0.008
P1/2c	$1.8316-1.6862$	1.7216	1.6870	15.6	114.8	0.064	0.009
P1/3a	$1.7845-1.6496$	1.6840	1.6505	15.8	110.6	0.063	0.009
P1/3b	$1.8169-1.6654$	1.7006	1.6662	14.6	117.2	0.068	0.009
P1/3c	$1.8334-1.6761$	1.7098	1.6768	14.3	135.7	0.070	0.007

[^0]
[^0]: ${ }^{a}$ Abbreviations: $n=$ refractive index, $v \mathrm{D}=$ Abbé number, $v_{\mathrm{D}}{ }^{\prime}=$ modified Abbé number, $D=$ chromatic dispersion in the visible region, and $D^{\prime}=$ chromatic dispersion in the IR region.

