Catalyst-Free Click Polymerization of Thiol and Activated Internal Alkynes: A Facile Strategy toward Functional Poly(β-thioacrylate)s

Jun Du,[†] Die Huang, [‡] Hongkun Li,^{*,†, ‡} Anjun Qin,[‡] Ben Zhong Tang,^{‡,§} and Yongfang Li[†]

[†]State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China

[‡]State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, China

[§]Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China

Table of Contents

Scheme S1. Synthetic route to monomers 2a–c.

Figure S1. IR spectra of monomers 2b (A) and 1 (B) and their polymer P1/2b (C). S3 Figure S2. IR spectra of monomers 2c (A) and 1 (B) and their polymer P1/2c (C). S4 Figure S3. IR spectra of monomers 3a (A) and 1 (B) and their polymer P1/3a (C). S4 Figure S4. IR spectra of monomers 3b (A) and 1 (B) and their polymer P1/3b (C). S5 Figure S5. IR spectra of monomers 3c (A) and 1 (B) and their polymer P1/3c (C). S5

S3

Figure S6. ¹ H NMR spectra of monomers 2b (A) and 1 (B) and their polymer	P 1/2b					
(C) in CDCl ₃ . The solvent and water peaks are marked with asterisks.	S 6					
Figure S7. ¹ H NMR spectra of monomers 2c (A) and 1 (B) and their polymer	P1/2c					
(C) in CDCl ₃ . The solvent and water peaks are marked with asterisks.	S 6					
Figure S8. ¹ H NMR spectra of monomers 3a (A) and 1 (B) and their polymer	P 1/3a					
(C) in CDCl ₃ . The solvent and water peaks are marked with asterisks.	S 7					
Figure S9. ¹ H NMR spectra of monomers 3b (A) and 1 (B) and their polymer	P 1/3b					
(C) in CDCl ₃ . The solvent and water peaks are marked with asterisks.	S 7					
Figure S10. ¹ H NMR spectra of monomers $3c$ (A) and 1 (B) and their polymer	P1/3c					
(C) in CDCl ₃ . The solvent and water peaks are marked with asterisks.	S 8					
Figure S11. ¹³ C NMR spectra of monomers 2b (A) and 1 (B) and their polymer	P1/2b					
(C) in CDCl ₃ . The solvent peaks are marked with asterisks.	S 8					
Figure S12. ¹³ C NMR spectra of monomers 2c (A) and 1 (B) and their polymer	P 1/2c					
(C) in CDCl ₃ . The solvent peaks are marked with asterisks.	S 9					
Figure S13. ¹³ C NMR spectra of monomers 3a (A) and 1 (B) and their polymer	P 1/3a					
(C) in CDCl ₃ . The solvent peaks are marked with asterisks.	S 9					
Figure S14. ¹³ C NMR spectra of monomers 3b (A) and 1 (B) and their polymer	P 1/3b					
(C) in CDCl ₃ . The solvent peaks are marked with asterisks.	S10					
Figure S15. ¹³ C NMR spectra of monomers 3c (A) and 1 (B) and their polymer	P 1/3c					
(C) in CDCl ₃ . The solvent peaks are marked with asterisks.	S10					
Figure S16. DSC curves of P1/2a-c and P1/3a-c measured under nitrogen	ı at a					
scanning rate of 2 °C/min.	S11					
Table S1. Refractive indices, Abbé numbers and chromatic dispersions of thin films						
of the PTAs.	S 11					

S2

Scheme S1. Synthetic route to monomers 2a–c.

Figure S1. IR spectra of monomers 2b (A) and 1 (B) and their polymer P1/2b (C).

Figure S2. IR spectra of monomers 2c (A) and 1 (B) and their polymer P1/2c (C).

Figure S3. IR spectra of monomers 3a (A) and 1 (B) and their polymer P1/3a (C).

Figure S4. IR spectra of monomers 3b (A) and 1 (B) and their polymer P1/3b (C).

Figure S5. IR spectra of monomers 3c (A) and 1 (B) and their polymer P1/3c (C).

Figure S6. ¹H NMR spectra of monomers **2b** (A) and **1** (B) and their polymer P**1/2b** (C) in CDCl₃. The solvent and water peaks are marked with asterisks.

Figure S7. ¹H NMR spectra of monomers **2c** (A) and **1** (B) and their polymer P**1/2c** (C) in CDCl₃. The solvent and water peaks are marked with asterisks.

Figure S8. ¹H NMR spectra of monomers **3a** (A) and **1** (B) and their polymer P**1/3a** (C) in CDCl₃. The solvent and water peaks are marked with asterisks.

Figure S9. ¹H NMR spectra of monomers **3b** (A) and **1** (B) and their polymer P1/3b (C) in CDCl₃. The solvent and water peaks are marked with asterisks.

Figure S10. ¹H NMR spectra of monomers 3c (A) and 1 (B) and their polymer P1/3c (C) in CDCl₃. The solvent and water peaks are marked with asterisks.

Figure S11. ¹³C NMR spectra of monomers **2b** (A) and **1** (B) and their polymer P**1/2b** (C) in CDCl₃. The solvent peaks are marked with asterisks.

Figure S12. ¹³C NMR spectra of monomers **2c** (A) and **1** (B) and their polymer P**1/2c** (C) in CDCl₃. The solvent peaks are marked with asterisks.

Figure S13. ¹³C NMR spectra of monomers **3a** (A) and **1** (B) and their polymer P**1/3a** (C) in CDCl₃. The solvent peaks are marked with asterisks.

Figure S14. ¹³C NMR spectra of monomers **3b** (A) and **1** (B) and their polymer P**1/3b** (C) in CDCl₃. The solvent peaks are marked with asterisks.

Figure S15. ¹³C NMR spectra of monomers **3c** (A) and **1** (B) and their polymer P**1/3c** (C) in CDCl₃. The solvent peaks are marked with asterisks.

Figure S16. DSC curves of P1/2a–c and P1/3a–c measured under nitrogen at a scanning rate of 2 °C/min.

Table S1. Refractive indices, Abbé numbers and chromatic dispersions of thin films of the PTAs^a

PTA	<i>n</i> ₄₀₀₋₁₇₀₀	<i>n</i> _{632.8}	<i>n</i> ₁₅₅₀	$v_{\scriptscriptstyle \mathrm{D}}$	$v_{\scriptscriptstyle D}$	D	D'
P 1/2a	1.7638-1.6304	1.6742	1.6318	15.9	69.0	0.063	0.014
P1/2b	1.8174–1.6574	1.6915	1.6581	12.8	126.9	0.078	0.008
P1/2c	1.8316-1.6862	1.7216	1.6870	15.6	114.8	0.064	0.009
P 1/3a	1.7845-1.6496	1.6840	1.6505	15.8	110.6	0.063	0.009
P 1/3b	1.8169–1.6654	1.7006	1.6662	14.6	117.2	0.068	0.009
P1/3c	1.8334–1.6761	1.7098	1.6768	14.3	135.7	0.070	0.007

^{*a*} Abbreviations: n = refractive index, $v_D =$ Abbé number, $v_D' =$ modified Abbé number, D = chromatic dispersion in the visible region, and D' = chromatic dispersion in the IR region.