Supporting Information

Laser-induced Graphene Derived from Kraft Lignin for Flexible Supercapacitors

Faisal Mahmood ^{a, c}, Hanwen Zhang ^a, Jian Lin ^b, Caixia Wan ^{a, *}

^a Department of Biomedical, Biological, and Chemical Engineering, University of Missouri,

Columbia 65211, USA

^b Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia

65211, USA

^c Department of Energy Systems Engineering, University of Agriculture Faisalabad, Faisalabad

38000, Pakistan

*Corresponding author: Phone: +1 573 884 7882; Fax: +1 573 884 5650; E-mail:

wanca@missouri.edu

Number of Pages: 8 Number of Tables: 1

Number of Figures: 5

1. Characterization

Crystalline size of graphitic carbon in the *a* axis (L_a) was calculated from the intensity ratio of G peak (I_G) to D peak (I_D) from Raman spectra following Equation (1): ¹

$$L_{a} = (2.4 \times 10^{-10}) \times \lambda_{I}^{4} \times \left(\frac{L_{G}}{L_{D}}\right) \qquad (1)$$

where λ_l is the wavelength of the Raman laser ($\lambda_l = 633$ nm).

Bending radius (r) of the PDMS-LIG-80 was calculated following Equation (2): ²

$$r = \frac{h^2 + \frac{d^2}{4}}{2h} \tag{2}$$

where h is the height of the bent device, and d is the distance between the two edges of the device. Figure S1 shows the supercapacitor device bent using a Vernier caliber, and the parameters used to calculate its bend radius.

Figure S1. (a) Optical image of LIG-80/PDMS-SC bent using a Vernier caliber. (b) Schematic diagram to display the parameters used to calculate a bend radius of LIG-80/PDMS-SC.

2. Electrochemical analysis

Cyclic voltammetry (CV) and galvanostatic charge-discharge (CD) measurements were conducted on CHI 660D electrochemical workstation (CHI Instruments, USA). The CV tests were carried out at an operating voltage (0 - 1.0 V) with different scan rates ranging from 10 to 500 mV s⁻¹. The CD tests was performed with current densities in a range of 0.01-0.02 mA cm⁻².

The specific areal capacitance (CA, in mF cm⁻²) based on CV curves was calculated following

Equation (3) below:

$$C_{A} = \frac{\int_{V_{i}}^{V_{f}} I \, dV}{2 \times S \times v \times (V_{f} - V_{i})}$$
(3)

where *S* is the surface area (in cm²) of an active LIG electrode, with 1 cm² for the device configuration in this work; v is the voltage scan rate (in V s⁻¹); V_f and V_i are the potential limits used for the CV analysis (in V); I is the voltammetry current (in A); and $\int_{V_i}^{V_f} I \, dV$ denotes the integrated area of CV curve.

The C_A (in mF cm⁻²) based on the CD curves was calculated using Equation (4):

$$C_{A} = \frac{I}{S \times \left(\frac{dV}{dt}\right)}$$
(4)

where I is the discharge current (in A); S is the surface area of the LIG (cm^2), with 1 cm^2 for the device configuration here; and dV/dt is the slope of the galvanostatic discharge curves.

The volumetric capacitance (C_V) (in mF cm⁻³) was calculated by dividing C_A by the thickness of active material (d, in cm) following Equation (5):

$$C_{\rm V} = \frac{C_{\rm A}}{\rm d} \tag{5}$$

The specific areal and volumetric energy densities (E_A in mWh cm⁻² and E_v in mWh cm⁻³, respectively) were calculated following Equations (6) and (7).

$$E_A = \frac{1}{2} \times C_A \times \frac{(\Delta V)^2}{3,600}$$
 (6)

$$E_V = \frac{1}{2} \times C_V \times \frac{(\Delta V)^2}{3,600}$$
 (7)

Where $\Delta V = V_{max} - V_{drop}$ is equivalent to the discharge potential range (V_{max} is the voltage of 1 V for H₂SO₄/PVA gel electrolyte); V_{drop} is the voltage drop indicated from the difference of the first two points in the data obtained from the discharge curves.

The specific area and volumetric power densities (P_A , in mW cm⁻² and P_V , in mW cm⁻³, respectively) were calculated following Equations (8) and (9).

$$P_A = \frac{E_A}{\Delta t} \times 3,600$$
 (8)

$$P_V = \frac{E_V}{\Delta t} \times 3,600 \tag{9}$$

where Δt is the discharge time (in sec).

3. Supplementary results

Table S1. Comparison of graphene-based flexible SCs

Carbon source	Electrode material	Method	C _A from CV	Scan rate	Energy density	Power density	Ref.
Kraft lignin	LIG on PDMS	Laser writing	880.25 μF cm ⁻²	10 mV/s	31.3 µWh/cm ⁻²	138 mW cm ⁻³	This work
Graphene	Graphene & gold- deposited PET	Spray coating	840 μF cm ⁻²	10 mV/s	12 mWh cm ⁻³	4.39 mW cm ⁻³	3
Polyimide	LIG N-PEDOT	Laser writing	720 μF cm ⁻²	75 μA cm ⁻²	N/A	N/A	4
Polyimide	LIG on PDMS	Laser writing	650 μF cm ⁻²	50 mV/s	N/A	N/A	5
Graphene oxide (GO)	rGO on PDMS	Photolithography	540 μF cm ⁻²	500 mV/s	0.52 mWh cm^{-2}	417 mW cm ⁻²	6
Graphene	Graphene woven fabric	CVD	17 μF cm ⁻²	60 mV/s	N/A	N/A	7

Figure S2. (a) XPS spectra. (b) Functionality revealed by high resolution C1s XPS.

Figure S3. SEM images of the remaining LIG-80 structure after peeling off. (a) Scale bar is 100 μ m. (b) Scale bar is 20 μ m.

Figure S4. Electrochemical analysis of LIG/PDMS-SC. (a) CV curves obtained at the scan rate of 10 mV s⁻¹. (b, c) Specific areal and volumetric capacitances as a function of scan rate, respectively. (d) CD curves obtained at the current density of 0.01 mA cm⁻². (e, f) Specific areal and volumetric capacitances as a function of current density.

Figure S5. Ragone plots of LIG-80/PDMS-SC. (a) Specific areal energy and current densities. (b) Specific volumetric energy and current densities.

References

- Cançado, L.; Takai, K.; Enoki, T.; Endo, M.; Kim, Y.; Mizusaki, H.; Jorio, A.; Coelho, L.; Magalhaes-Paniago, R.; Pimenta, M. J. A. P. L. General equation for the determination of the crystallite size L a of nanographite by Raman spectroscopy. *Appl Phys Lett* **2006**, *88* (16), 163106.
- (2) Peng, Z.; Ye, R.; Mann, J. A.; Zakhidov, D.; Li, Y.; Smalley, P. R.; Lin, J.; Tour, J. M. J. A. n. Flexible boron-doped laser-induced graphene microsupercapacitors. ACS Nano 2015, 9 (6), 5868-5875.
- (3) Wu, Z.-S.; Liu, Z.; Parvez, K.; Feng, X.; Müllen, K. Ultrathin printable graphene supercapacitors with ac line-filtering performance. *Adv. Mater.* **2015**, *27* (24), 3669-3675.
- (4) Song, W.; Zhu, J.; Gan, B.; Zhao, S.; Wang, H.; Li, C.; Wang, J. Flexible, stretchable, and transparent planar microsupercapacitors based on 3D porous laser-induced graphene. *Small* 2018, 14 (1), 1702249.
- (5) Lamberti, A.; Clerici, F.; Fontana, M.; Scaltrito, L. J. A. E. M. A Highly stretchable supercapacitor using laser-induced graphene electrodes onto elastomeric substrate. *Adv. Energy Mater.* 2016, 6 (10), 1600050.
- (6) Qi, D.; Liu, Z.; Liu, Y.; Leow, W. R.; Zhu, B.; Yang, H.; Yu, J.; Wang, W.; Wang, H.; Yin, S.; Chen, X. Suspended wavy graphene microribbons for highly stretchable microsupercapacitors. *Adv. Mater.* 2015, 27 (37), 5559-5566.
- (7) Zang, X.; Zhu, M.; Li, X.; Li, X.; Zhen, Z.; Lao, J.; Wang, K.; Kang, F.; Wei, B.; Zhu, H. Dynamically stretchable supercapacitors based on graphene woven fabric electrodes. *Nano Energy* 2015, 15, 83-91.