Amorphous Mixtures of Ice and C₆₀ Fullerene

Siriney O. Halukeerthi,^a Jacob J. Shephard,^{a,b} Sukhpreet K. Talewar,^a John S. O. Evans,^b Alexander Rosu-Finsen,^a Christoph G. Salzmann^a*

^a Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom; e-mail: c.salzmann@ucl.ac.uk

^b Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom

Table of Contents

1. Co	mposition of C_{60} / H_2O samples	2
1.1	Constant H ₂ O flow with varying amounts of C ₆₀	2
1.2	Varying the H ₂ O flow with constant amounts of C ₆₀	4
1.3	Molecular-volume percentages of C_{60} in C_{60} / H_2O mixtures	6
2. Ad	ditional X-ray diffraction patterns	7
2.1	Comparison with the XRD pattern of bulk C60	7
2.2	X-ray diffraction patterns of C_{60} / H_2O mixtures heated from 95 K to 270 K	8
2.3	MCDIFFaX fits of the 150 K diffraction patterns	9
2.4	Intensity of the (110) Bragg peak of ice I as a function of the cubicity	9
3. SE	M picture of a pure C ₆₀ film deposited at 90 K	10
4. Re	ferences	10

1. Composition of C₆₀ / H₂O samples

Different molar ratios of H_2O and C_{60} in the C_{60} / H_2O samples were obtained by adjusting the deposition rates of H_2O and C_{60} .

1.1 Constant H₂O flow with varying amounts of C₆₀

Firstly, the deposition of H₂O at 85 K was monitored with a quartz crystal microbalance (QCM). The deposition rate of H₂O at an inlet pressure of 1.00×10^{-1} mbar was determined to be 0.85 µg cm⁻² s⁻¹ by performing a linear fit to the data shown in Fig. S1, where the gradient is equal to the mass deposition rate. This deposition rate was divided by the molar mass of H₂O (18.02 g mol⁻¹) to give a molar deposition rate of 4.75×10^{-2} µmol cm⁻² s⁻¹.

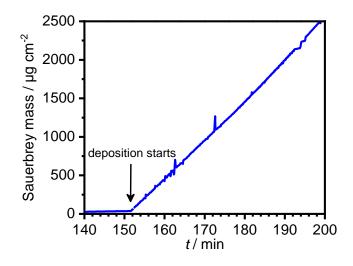


Fig. S1. Sauerbrey mass recorded during the deposition of pure H_2O at an H_2O inlet pressure of 0.100 mbar.

In the next step, the QCM response was recorded as C_{60} sublimed onto the deposition plate. For this, the temperature of the deposition source was set to a range of different temperatures. Once a specific temperature was reached, the pneumatic shutter above the crucible was lifted, allowing the C_{60} to be deposited onto the deposition plate. The shutter was then closed, and the temperature increased to the next desired temperature, as shown in Fig. S2(a). The deposition rate was then calculated by determining the gradients from the QCM data. In Fig. S2(b), the deposition rate of C_{60} is plotted against the temperature of the deposition source.

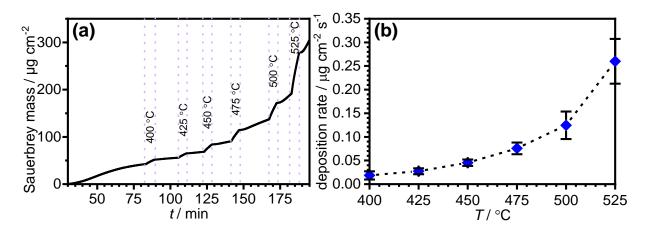


Fig. S2. (a) QCM response during a typical C_{60} calibration experiment. (b) The average mass deposition rate of C_{60} against the corresponding deposition source temperature.

The mass deposition rates of C_{60} at different deposition source temperatures were divided by the molar mass of C_{60} (720.66 g mol⁻¹) to obtain molar deposition rates as shown in Table S1.

Table S1: Average mass and molar deposition rates as well as $H_2O:C_{60}$ molar ratios for	eacn
temperature of the deposition source and a water deposition rate of 4.75 $ imes$ 10 ⁻² µmol cm	$^{-2} s^{-1}$.

11 01

T

<i>T</i> / °C	average C_{60} deposition rate / $\mu g \ cm^{-2} s^{-1}$	average C_{60} molar deposition rate / μ mol cm ⁻² s ⁻¹	H ₂ O:C ₆₀ molar ratio
400	1.86×10 ⁻²	2.58×10 ⁻⁵	1841:1
425	2.73×10^{-2}	3.79×10 ⁻⁵	1254:1
450	4.54×10^{-2}	6.31×10 ⁻⁵	754:1
475	7.57×10^{-2}	1.05×10^{-4}	452:1
500	1.25×10^{-1}	1.74×10^{-4}	274:1
525	2.60×10^{-1}	3.61×10 ⁻⁴	132:1

In order to determine the molar ratios of the $H_2O:C_{60}$ mixtures for a specific deposition source temperature, the molar deposition rate of H_2O was divided by that of C_{60} . The ratios and their errors are shown in Fig. S3.

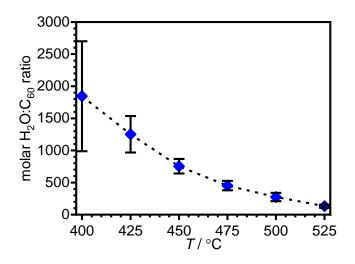


Fig. S3: Molar $H_2O:C_{60}$ ratios as a function of the temperature of the deposition source and a water deposition rate of $4.75 \times 10^{-2} \,\mu$ mol cm⁻² s⁻¹. The relatively large error bar at 400°C is due to the low sublimation rate of C_{60} .

To realise a range of molar H₂O:C₆₀ ratios and considering the errors, the chosen ratios were 1254:1 (source $T = 425^{\circ}$ C), 452:1 ($T = 475^{\circ}$ C) and 132:1 ($T = 525^{\circ}$ C).

1.2 Varying the H₂O flow with constant amounts of C₆₀

In section 1.1, the H₂O inlet pressure was set to 1.00×10^{-1} mbar, which resulted in a deposition rate of 0.85 µg cm⁻² s⁻¹. To extend the composition range towards more C₆₀-rich mixtures, the H₂O inlet pressure was reduced in the following while the deposition source was maintained at 525°C.

The first step for calculating the ratios was to determine the deposition rates of H_2O for inlet pressures of 5.00×10^{-3} mbar, 2.00×10^{-2} and 5.00×10^{-2} , using the QCM as shown in Fig S4.

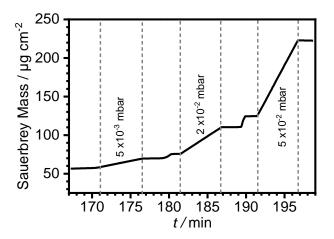


Fig. S4: QCM response during the H_2O calibration experiment by varying the inlet pressure.

As shown in Table S2, the deposition rates were divided by the molar mass of H_2O to obtain molar deposition rates.

Table S2: H₂O inlet pressures with their corresponding mass and molar deposition rates as well as H₂O:C₆₀ molar ratios with $3.61 \times 10^{-4} \mu mol \ cm^{-2} \ s^{-1} \ C_{60}$.

inlet pressure / mbar	deposition rate / $\mu g \ cm^{-2} s^{-1}$	molar deposition rate / μ mol cm ⁻² s ⁻¹	H ₂ O:C ₆₀ molar ratio
5.00×10 ⁻²	0.31	1.72×10^{-2}	48:1
2.00×10 ⁻²	0.11	6.02×10^{-3}	17:1
5.00×10 ⁻³	0.03	1.87×10^{-3}	5:1

The molar deposition rate values were then divided by the deposition rate of C_{60} at 525°C (3.61 × 10⁻⁴ µmol cm⁻² s⁻¹) to determine the H₂O:C₆₀ ratio of mixtures at the different H₂O inlet pressures as shown in Fig. S5.

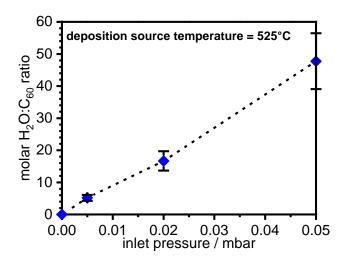


Fig. S5: Molar $H_2O:C_{60}$ ratios at a constant deposition source temperature of 525 °C and varying the H_2O inlet pressures.

1.3 Molecular-volume percentages of C60 in C60 / H2O mixtures

First, the molar volume of low-density amorphous ice (LDA) was calculated. The density of LDA is known to be 0.93 g cm⁻³, therefore the density can be divided by the molar mass of H₂O to give a molar volume of 5.16×10^{-2} mol cm⁻³. The molecular volume was calculated as 3.21×10^{-23} cm³ or 32.18 Å³.

The second step was to determine the molar density of C_{60} at cryogenic temperatures. From the cubic lattice constant a = 14.05 Å at 80 K, the density of C_{60} was calculated to be 1.74 g cm⁻³.¹⁻² The molecular volume of C_{60} was therefore determined to be 687.77 Å³.

In Table S3, the molecular volumes of LDA and C_{60} were used to work out the molecular volume percentages of C_{60} for the various mixtures. These calculations assume a zero excess volume.

<i>T</i> / °C	C ₆₀ :H ₂ O molar ratios	C ₆₀ volume percent / %
425	1:1254	1.7
475	1:452	4.5
525	1:132	14
525	1:48	31
525	1:17	56
525	1:5	81

Table S3: C_{60} : H_2O molar ratios with their corresponding C_{60} molecular-volume percentages.

2. Additional X-ray diffraction patterns

2.1 Comparison with the XRD pattern of bulk C60

The XRD patterns of bulk C_{60} at room temperature and the most C_{60} -rich sample (1:17) at $-3^{\circ}C$ are shown in Figure S6. The pattern of bulk C_{60} agrees well with those reported in the literature.¹

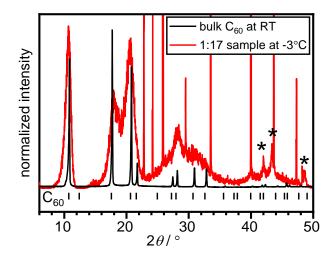


Fig. S6: Comparison of the XRD patterns of bulk C_{60} at room temperature and the most C_{60} -rich sample (1:17) at $-3^{\circ}C$ ($\lambda = 1.54$ Å). The sharp Bragg peaks of the 1:17 sample arise from ice Ih. Features marked with asterisks originate from the sample holder.

2.2 X-ray diffraction patterns of C₆₀ / H₂O mixtures heated from 95 K to 270 K

Complete set of XRD artificial heat maps of the pure H_2O and the C_{60}/H_2O mixtures ranging from 1.67 - 56.03 v% C_{60} is shown in Fig. S7. XRD data of the 80.44 v% C_{60} sample could not be collected due to the finely powdered nature of the sample.

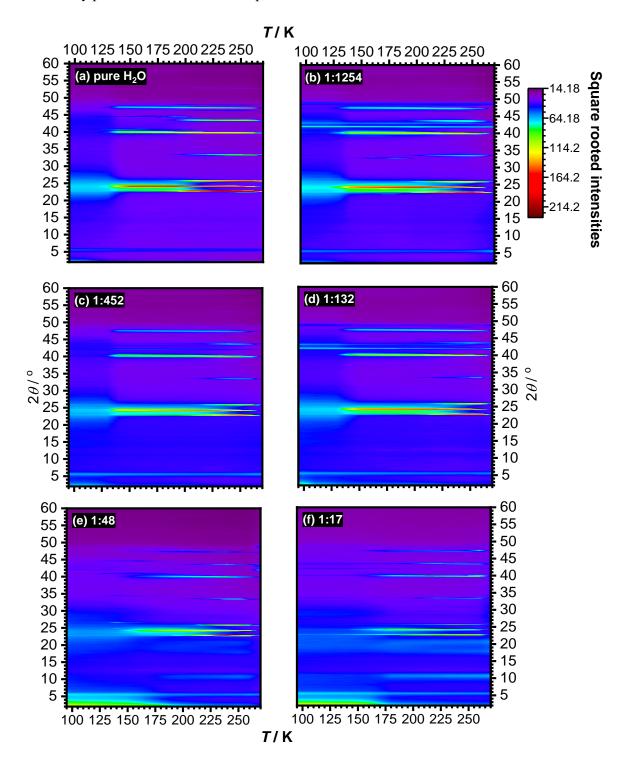


Fig. S7. Contour plots of X-ray diffraction patterns ($\lambda = 1.54$ Å) recorded upon heating at ambient pressure of pure H₂O and C₆₀:H₂O mixtures with the indicated molar ratios.

2.3 MCDIFFaX fits of the 150 K diffraction patterns

Detailed background information on stacking disorder in ice and the MCDIFFaX approach are given in refs 3-5.

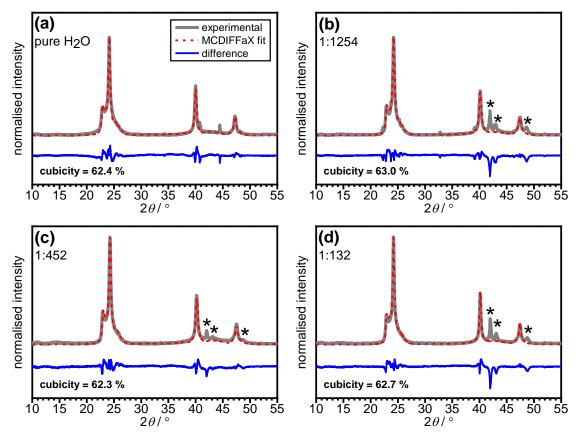


Fig. S8. MCDIFFaX fits of the XRD patterns (Cu K α) of ice Isd obtained after crystallizing (a) pure ASW and (b-c) C₆₀ / H₂O mixtures at 150 K with the indicated C₆₀:H₂O molar rations. The obtained cubicities are noted for each sample. Features marked with asterisks are due to the brass sample holder.

2.4 Intensity of the (110) Bragg peak of ice I as a function of the cubicity

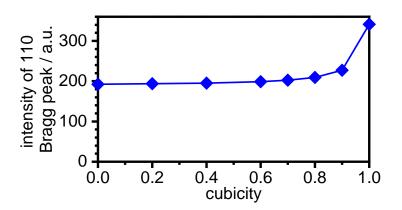
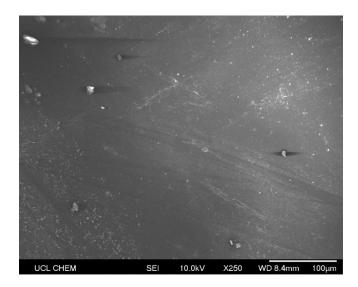



Fig. S9: Intensity of the (110) Bragg peak of ice I calculated with MCDIFFaX as a function of the cubicity.

3. SEM picture of a pure C₆₀ film deposited at 90 K

Fig. S10. SEM image of pure C_{60} *on an aluminium SEM stub at 100 µm magnification.*

4. References

- Heiney, P. A.; Fischer, J. E.; McGhie, A. R.; Romanow, W. J.; Denenstein, A. M.; McCauley Jr, J. P.; Smith, A. B.; Cox, D. E., Orientational Ordering Transition in Solid C₆₀. *Phys. Rev. Lett.* **1991**, *66*, 2911-2914.
- 2. David, W. I. F.; Ibberson, R. M.; Dennis, T. J. S.; Hare, J. P.; Prassides, K., Structural Phase Transitions in the Fullerene C 60. *EPL* **1992**, *18*, 219-225.
- 3. Malkin, T. L.; Murray, B. J.; Brukhno, A. V.; J., A.; Salzmann, C. G., Structure of Ice Crystallized from Supercooled Water. *Proc. Natl. Acad. Sci. USA* **2012**, *109*, 1041-1045.
- 4. Malkin, T. L.; Murray, B. J.; Salzmann, C. G.; Molinero, V.; Pickering, S. J.; Whale, T. F., Stacking Disorder in Ice I. *Phys. Chem. Chem. Phys.* **2015**, *17*, 60-76.
- 5. Salzmann, C. G.; Murray, B. J.; Shephard, J. J., Extent of Stacking Disorder in Diamond. *Diam. Relat. Mater.* **2015**, *59*, 69-72.