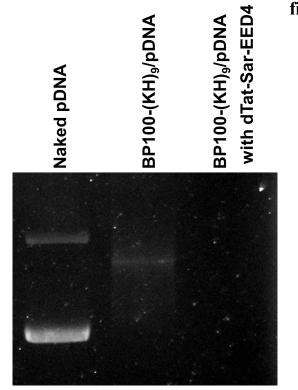
Supporting Information

Dual peptide-based gene delivery system for the efficient transfection of plant callus cells

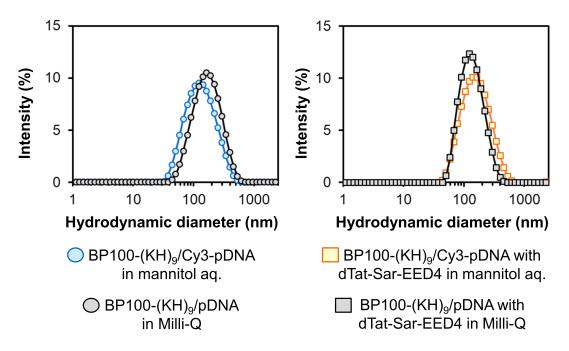
Takaaki Miyamoto[†], Kousuke Tsuchiya[†]*, Keiji Numata^{†‡}*

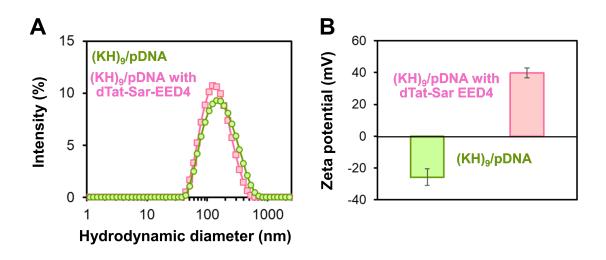

†Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan

‡Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.

Contents

Supplementary figures


Figure. S1	Electrophoretic mobility of the naked pDNA, the BP100- (KH) ₉ /pDNA complex, or the BP100-(KH) ₉ /pDNA complex with dTat-Sar-EED4.	p. S2
Figure. S2	Effect of Cy3 (a fluorescent dye)-labeling of pDNA and presence of mannitol on the formation of the BP100-(KH) ₉ /pDNA complex.	p. S3
Figure. S3		p. S4


Supplementary

figures

Figure S1. Electrophoretic mobility of the naked pDNA, the BP100-(KH)₉/pDNA complex (N/P = 0.5), or the BP100-(KH)₉/pDNA complex (N/P = 0.5) with dTat-Sar-EED4.

Figure S2. Effect of Cy3 (a fluorescent dye)-labeling of pDNA and presence of mannitol on the formation of the BP100-(KH)₉/pDNA complex. In the absence and presence of dTat-Sar-EED4 (96 μ M), DLS measurements were performed three times for the labeled (BP100-(KH)₉/Cy3-pDNA (N/P =0.5)) complex in 0.4 M mannitol aqueous solution, or for the unlabeled (BP100-(KH)₉/pDNA (N/P =0.5)) complex in Milli-Q water. The mean hydrodynamic diameter and PDI of each system were as follow: the labeled complex in mannitol aq., 145 nm and 0.279; the unlabeled complex in Milli-Q, 160 nm and 0.211; the labeled complex with dTat-Sar-EED4 in mannitol aq., 119 nm and 0.257; the unlabeled complex with dTat-Sar-EED4 in Milli-Q, 130 nm and 0.240.

Figure S3. Physicochemical properties of the (KH)₉/pDNA complex (N/P = 0.5) in the absence and presence of dTat-Sar-EED4 (96 μ M). (A) Representative size distributions and (B) zeta potentials of the complexes. Error bars represent standard deviations (n = 3). The mean hydrodynamic diameter, PDI, and zeta potential of each system were as follow: (KH)₉/pDNA, 147 nm, 0.229, and -26 mV; (KH)₉/pDNA with dTat-Sar-EED4, 128 nm, 0.238, and 40 mV.