Supporting Information

Amorphous High Surface Area Aluminum Hydroxide-Bicarbonates for Highly-Efficient Methyl Orange Removal from Water

Yuki Kinoshita^a, Yuto Shimoyama,^a Yoichi Masui,^a Yoshiteru Kawahara,^b Kenji Arai,^b

Teruki Motohashi,^b Yasuto Noda,^c and Sayaka Uchida^a*

^aDepartment of Basic Science, School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan).

^bDepartment of Materials and Life Chemistry, Graduate School of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686 (Japan).

^cDivision of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan).

Corresponding author e-mail: csayaka@mail.ecc.u-tokyo.ac.jp

Page S2: Table S1. Results of elemental analysis of aluminum hydroxide-bicarbonates.

Page S2: Table S2. MO adsorption on various adsorbents.

Page S3: Figure S1. IR spectra of (a) I-NaOH and (b) I-NH₃ synthesized at various pH levels.

Page S4: Figure S2. ¹³C CPMAS NMR spectra of (a) I-NaOH and (b) I-NH₃ synthesized at various pH levels.

Page S5: Figure S3. PXRD patterns of (a) I-NaOH and (b) I-NH₃ synthesized at various pH levels.

Page S6: Figure S4. TG-GC data of I-NaOH-7.8-216 and I-NH₃-7.8-165.

Page S7: Figure S5. IR spectra, ¹³C MAS NMR spectra, and SEM images of I-NH₃-8.6-90 before and after MO adsorption.

Page S8: Figure S6. UV-vis spectra and photo images of aqueous solutions of phosphoric acid before and after the addition of I-NaOH-6.6-61 or I-NH₃-5.8-67.

Page S9: Figure S7. Pore size distributions of I-NaOH-6.6-61 and I-NH₃-5.8-67.

Page S10: Figure S8. ²⁷Al NMR spectra of 1 mol L⁻¹ Al(NO₃)₃aq, Al₁₃ solution prepared with NaOH or NH₃.

Page S11: Figure S9. ²⁷Al MAS NMR spectra of aluminum hydroxide-bicarbonates synthesized with Al₁₃ or Al₃₀.

Page S12: Figure S10. ²⁷Al MAS NMR spectra of I-NH₃-8.6-90 and I-NaOH-7.4-206.

Table S1. Results of elemental analysis (wt%) of aluminum hydroxide-bicarbonates

Compound	pH of synthetic solution <i>m</i>	Total BET surface area $n [m^2 g^{-1}]$	Al	С	Н
I-NH ₃	4.8	38	31.2	1.08	3.14
I-NH ₃	7.8	165	31.3	1.01	3.04
I-NH ₃	9.6	6.7	31.8	1.22	3.33
$[Al_{13}O_4(\mu\text{-}OH)_{24}(H_2O)_6(OH)_6](HCO_3)$			32.1	1.10	3.96

Amounts of N in $I-NH_3$ were negligible (< 0.2wt%). See ref. 11 for the elemental analysis of I-NaOH prepared under different pH.

 Table S2. MO adsorption on various adsorbents at r.t. (or 303 K)

Compound	$K [g mg^{-1} min]$	${}^{\mathrm{b}}q_{\mathrm{m}}[\mathrm{mg}~\mathrm{g}^{-1}]$	Ref
I-NH ₃	0.037	154	This work
activated carbon	1.6-9.6 × 10 ⁻⁵	217	S1
chitosan/Al ₂ O ₃ / magnetite	0.002-0.02	417	S2
MOF-235	$7.7-9.1 \times 10^{-5}$	477	S3
MIL-101	9.01×10 ⁻⁴	114	S4
banana peel	-	21	S5
orange peel	-	21	S5

^aEquilibrium rate constant calculated by the pseudo-second order model. ^bMaximum adsorption capacity calculated by the Langmuir model. [S1] S. Chen, J. Zhang, C. Zhang, Q. Yue, Y. Li, C. Li, Desalination 252 (2010) 149–156. [S2] B. Tanhaei, A. Ayati, M. Lahtinen, M. Sillanpää, Chem. Eng. J. 259 (2015) 1-10. [S3] E. Haque, J. W. Jun, S. H. Jhung, J. Hazardous. Mater. 185 (2011) 507-511. [S4] E. Haque, J. E. Lee, I. T. Jang, Y. K. Hwang, J. –S. Chang, J. Jegal, S. H. Jhung, J. Hazardous. Mater. 181 (2010) 535-542. [5] G. Annadurai, R. –S. Juang, D. –J. Lee, J. Hazardous. Mater. B92 (2002) 263-274.

Figure S1. IR spectra of (a) I-NaOH and (b) I-NH₃ synthesized at various pH levels.

Figure S2. ¹³C CPMAS NMR spectra of (a) I-NaOH and (b) I-NH₃ synthesized at various pH levels.

Figure S3. PXRD patterns of (a) I-NaOH and (b) I-NH₃ synthesized at various pH levels.

Figure S4. TG-GC data of (left) I-NaOH-7.8-216 and (right) I-NH₃-7.8-165.

Figure S5. (a) IR and (b) ¹³C MAS NMR of **I-NH₃-8.6-90** (top) before and (bottom) after MO adsorption. Arrows in (a) indicates the signals of MO. SEM images of **I-NH₃-8.6-90** (c) before and (d) after MO adsorption. White bars in (c) and (d) indicate 100 nm.

Figure S6. UV-vis spectra and photo images of aqueous solutions of phosphoric acid before (initial phosphate ion concentration 362 mg L⁻¹) and after the addition of 150 mg (1.4×10^{-1} mmol) of (a) **I-NaOH-6.6-61** or (b) **I-NH₃-5.8-67**. The amount of phosphate ions was analyzed by the molybdenum blue method (see the experimental section).

Figure S7. Pore size distributions of I-NaOH-6.6-61 and I-NH₃-5.8-67.

Figure S8. ²⁷Al-NMR spectra of (top) 1 mol L⁻¹ Al(NO₃)₃aq, Al₁₃ solution prepared with (middle) NaOH or (bottom) NH₃. Note that Al(NO₃)₃aq contains only 6-coordinated aluminum species ([Al(H₂O)₆]³⁺). Broad signals are due to an NMR tube.

Figure S9. ²⁷Al MAS NMR spectra (²⁷Al = 104.27 MHz, MAS = 10 kHz) of aluminum hydroxide-bicarbonates synthesized with (top) Al_{13} or (bottom) Al_{30} . Asterisks denote spinning side bands.

Figure S10. ²⁷Al MAS NMR spectra (²⁷Al = 104.27 MHz, MAS = 10 kHz) of I-NH₃-8.6-90 and I-NaOH-7.4-206. Asterisks denote spinning side bands.