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Appendix A) Calculation of Lcontour/Lmesh

Figure S1. Schematic illustration of the unit length of PBDT. 
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To estimate contour length of PBDT (Lcontour), we used the following equation,

𝐿𝑐𝑜𝑛𝑡𝑜𝑢𝑟 = (𝑀𝑤

𝑀𝑢) × 𝐿0

where Mw, Mu, and L0 are the molecular weight of PBDT, repeat unit weight of PBDT and unit 
length of PBDT, respectively. From the GPC experiment and simple arithmetic, Mw and Mu are 
determined to be ~142,000 and ~518. Assuming that all bond angles are 120° as shown in Figure 
S1, the unit length (L0) can be obtained as follows;

𝐿0 = {𝐿𝑎 × 2 + 𝐿𝑎 × cos 60° × 2} + {𝐿𝑏 × 3 + 𝐿𝑏 × cos 60° × 6} + {𝐿𝑐 × 3}
𝐿0 = 3𝐿𝑎 + 6𝐿𝑏 + 3𝐿𝑐

where La, Lb, and Lc are the bond length of N-sp2 C, aromatic C and sp2-sp2 C, respectively. By 
taking the value from the reference[1,2]: La = 0.133 nm, Lb = 0.140 nm, and Lc = 0.147 nm, the unit 
length (L0) is calculated as 1.68 nm. Finally, we obtained Lc as follows.

𝐿𝑐𝑜𝑛𝑡𝑜𝑢𝑟 =
142,000

518 × 1.68 = 460.5 𝑛𝑚

To estimate the mesh size of the PAAm network (Lmesh), we use the following equation derived 
from the affine model:[3] 

𝐿𝑚𝑒𝑠ℎ ≈ (3𝑘𝑏𝑇
𝐸 )

1/3

Where kb is Boltzmann Constant, T is temperature (25°C), and E is Young’s modulus. Utilizing 
E=17 kPa from our previous paper[4] results in Lmesh = ~9 nm. 

Finally, Lcontour/Lmesh ≈ 51, meaning that the chains of PBDT extend through many units of the 
PAAm network, effectively locking it in place. This result demonstrates why when stretching force 
is applied to the PBDT/PAAm gel the PBDT chains align and cannot relax. 
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Figure S2. Effect of crosslinking density of the PAAm network on the mechanical properties of the 
PBDT/PAAm gels crosslinked in 0.15 M ZrCl2O solution. a) Typical stress-strain curves from uniaxial tensile 
testing. The blue, green and red line represent the MBAA concentration for 0.01, 0.1 and 1 mol%, respectively. 
b) Young’s modulus of the samples estimated from the initial slopes of the stress-strain curves. The error bars 
are standard deviation from the results of 3-5 samples. For the 0.1 mol% sample, the error was so small that error 
bars are not visible. 

Figure S3. Comparison of measured strain and adjusted strain, accounting for pre-stretching. a) Strain at break 
in the parallel direction to pre-stretching. Pre-stretching reduces the measured strain at break. b) Strain at break 
in the perpendicular direction to pre-stretching. Poisson’s effects cause the measured strain to be slightly greater 
than the true strain. 


