Supplementary Information

Synergistic influence of $d^{0}\left(\mathrm{Nb}^{5+}\right)$ and $\boldsymbol{d}^{10}\left(\mathrm{Cd}^{2+}\right)$ cations in stabilizing noncentrosymmetric Dion-Jacobson layered perovskites, $\mathbf{A}^{\prime} \mathbf{C d}_{2} \mathbf{N b}_{3} \mathbf{O}_{10}\left(\mathbf{A}^{\prime}=\mathbf{R b}, \mathrm{Cs}\right)$

Shalu Atri, Meenakshi Pokhriyal, and Sitharaman Uma ${ }^{*}$
Materials Chemistry Group, Department of Chemistry, University of Delhi, Delhi 110007, INDIA
*Author for correspondence: suma@chemistry.du.ac.in

Figure S1 Crystal structure of $\mathrm{CsCd}_{2} \mathrm{Nb}_{3} \mathrm{O}_{10}$ generated from the solution of single crystal Xray diffraction measurements.

Figure S2 PXRD patterns (a) obtained for the bulk polycrystalline and (b) simulated using the SXRD solution of $\mathrm{CsCd}_{2} \mathrm{Nb}_{3} \mathrm{O}_{10}$.

Figure S3 (a) FESEM, (b) TEM images, (c) SAED along [100] and (d) HRTEM pattern along [100] zone axes of $\mathrm{CsCd}_{2} \mathrm{Nb}_{3} \mathrm{O}_{10}$ sample.

Figure S4 (a) FESEM and (b) TEM images of $\mathrm{RbCd}_{2} \mathrm{Nb}_{3} \mathrm{O}_{10}$.

Figure S5 PXRD pattern of products obtained after calcination of (a) $\mathrm{RbCd}_{2} \mathrm{Nb}_{3} \mathrm{O}_{10}$ and (b) $\mathrm{CsCd}_{2} \mathrm{Nb}_{3} \mathrm{O}_{10}$ at $1075{ }^{\circ} \mathrm{C}$.

Figure $\mathbf{S 6}$ TG curves for the polycrystalline (a) $\mathrm{RbCd}_{2} \mathrm{Nb}_{3} \mathrm{O}_{10}$ and (b) $\mathrm{CsCd}_{2} \mathrm{Nb}_{3} \mathrm{O}_{10}$ samples.

Figure $\mathbf{S 7} 7 \mathrm{EDS}$ spectra of (a) H^{+}, (b) Li^{+}and (c) Na^{+}-exchanged products of $\mathrm{RbCd}_{2} \mathrm{Nb}_{3} \mathrm{O}_{10}$.
Inset shows their respective SEM image and elemental analysis table. The corresponding spectra for products obtained from $\mathrm{CsCd}_{2} \mathrm{Nb}_{3} \mathrm{O}_{10}$ are shown in (d), (e) and (f).

Figure $\mathbf{S 8}$ (a) PXRD patterns of (i) $\mathrm{CsCd}_{2} \mathrm{Nb}_{3} \mathrm{O}_{10}$, (ii) H^{+}-exchanged and (iii) the regenerated product obtained after treatment of H^{+}-exchanged sample with a solution of $0.5 \mathrm{M} \mathrm{CsNO}_{3}$. (b) PXRD patterns of (i) $\mathrm{CsCd}_{2} \mathrm{Nb}_{3} \mathrm{O}_{10}$, (ii) Li^{+}-exchanged product and (iii) the regenerated product obtained after treatment of the Li^{+}-exchanged sample with a solution of 0.5 M CsNO_{3}. (c) TG curve for H^{+}-exchanged sample.

Figure S9 (a) TEM image and (b) \& (c) represents SAED pattern along [011] \& [100] zone axes of $\mathrm{HCd}_{2} \mathrm{Nb}_{3} \mathrm{O}_{10}$.

Figure S10 PXRD patterns of products of ion exchange reactions of (a) $\mathrm{RbCd}_{2} \mathrm{Nb}_{3} \mathrm{O}_{10}$ and (b) $\mathrm{CsCd}_{2} \mathrm{Nb}_{3} \mathrm{O}_{10}$ with (i) Na^{+}ions and (ii) K^{+}ions.

Table S1 Crystallographic parameters of $\mathrm{CsCd}_{2} \mathrm{Nb}_{3} \mathrm{O}_{10}$ from SXRD

Crystal Data			
Formula	$\mathrm{CsCd}_{2} \mathrm{Nb}_{3} \mathrm{O}_{10}$	Largest diff. peak and hole [e/ \AA^{3}]	3.22/-5.84
Crystal system	Tetragonal	Scan mode	ω scan
Space Group	$\begin{gathered} P 4 / \mathrm{mmm} \\ (123) \end{gathered}$	Min/Max Bragg angle [${ }^{\circ}$]	4.0783-29.2618
\boldsymbol{a} [\AA]	3.8440(8)	$h k l$ range	$-5 \rightarrow 5,-4 \rightarrow 4,-18 \rightarrow 20$
$b[\AA]$	3.8440(8)	F(000)	354
$c[\AA]$	14.990(5)	$\mu\left(\mathrm{mm}^{-1}\right)$	12.576
$\mathrm{V}\left[\AA^{\mathbf{3}}{ }^{\text {] }}\right.$	221.51(12)	$\mathbf{R}_{\text {int }}$	0.1068
Z	1	$\mathbf{R}_{\text {sigma }}$	0.0531
ρ calc [g/cm $\left.{ }^{3}\right]$	5.971	Refinement	F2
Morphology	Rectangular	No. of reflections used	2817
Colour	Colorless	Unique reflections	234
Dimensions (mm)	$\begin{gathered} 0.08 \times 0.05 \times \\ 0.04 \end{gathered}$	Number of parameters	19
Temperature [K]	150(2)	$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]$	0.0738
Wavelength [Mo $\left.\mathbf{K}_{\alpha}\right]$ [$]$	0.71073	wR_{2}	0.1546
Monochromator	Graphite	GOF	1.237
Extinction Coefficient	0.007(3)		

Table S2 Positional and thermal parameters of $\mathrm{CsCd}_{2} \mathrm{Nb}_{3} \mathrm{O}_{10}$ in S.G. P4/mmm.

Atom	Wyckoff position	$\boldsymbol{x} / \boldsymbol{a}$	$\boldsymbol{y} / \boldsymbol{b}$	$\boldsymbol{z} / \boldsymbol{c}$	SOF	$\mathbf{U}_{(\text {(iso) }} \AA^{\mathbf{2}}$
Cs	$1 d$	0.5	0.5	0.5	1	$0.017(1)$
Cd	$2 h$	-0.5	-0.5	$0.1452(1)$	1	$0.0129(9)$
Nb 1	$1 a$	0.0	0.0	0.0	1	$0.008(1)$
Nb 2	$2 g$	0.0	0.0	$0.2803(2)$	1	$0.013(1)$
O 1	$2 g$	0.0	0.0	$0.395(4)$	1	$0.062(14)$
O 2	$4 i$	0.0	0.5	$0.253(3)$	1	$0.10(1)$
O 3	$2 g$	0.0	0.0	$0.123(6)$	1	$0.14(3)$
O 4	$2 f$	0.0	0.5	0.0	1	$0.22(5)$

Table S3 Selected bond distances (in \AA) of $\mathrm{CsCd}_{2} \mathrm{Nb}_{3} \mathrm{O}_{10}$ in S.G. P4/mmm.

Atoms	Bond distance (\AA)
$\mathrm{Cs}-\mathrm{O} 1 \times 8$	$3.14(3)$
$\mathrm{Nb} 1-\mathrm{O} 3 \times 2$	$1.85(9)$
$\mathrm{Nb} 1-\mathrm{O} 4 \times 4$	$1.9220(4)$
$\mathrm{Nb} 2-\mathrm{O} 1$	$1.72(5)$
$\mathrm{Nb} 2-\mathrm{O} 2 \times 4$	$1.964(9)$
$\mathrm{Nb} 2-\mathrm{O} 3$	$2.36(9)$
$\mathrm{Cd}-\mathrm{O} 2 \times 4$	$2.51(3)$
$\mathrm{Cd}-\mathrm{O} 3 \times 4$	$2.73(1)$
$\mathrm{Cd}-\mathrm{O} 4 \times 4$	$2.90(1)$

