Radical Pentafluoroethylation of Unactivated Alkenes Using CuCF₂CF₃

Xinkan Yang and Gavin Chit Tsui*

Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR.

Table of Contents

General Experimental. Analytical thin layer chromatography (TLC) was performed with EM Science silica gel 60 F254 aluminum plates. Visualization was done under a UV lamp (254 nm) and by immersion in ethanolic phosphomolybdic acid (PMA) or potassium permanganate (KMnO₄), followed by heating using a heat gun. Organic solutions were concentrated by rotary evaporation at 23–35 °C. Purification of reaction products were generally done by flash column chromatography with Grace Materials Technologies 230–400 mesh silica gel.

Materials. Halocarbon 125-Pentafluoroethane (Purity: 99.0% min., 9.1kg in 16 L size cylinder) was purchased from SCIENTIFIC GAS ENGINEERING CO., LTD. Copper(I) chloride (extra pure, 99.99%) was purchased from Acros. Potassium *tert*-butoxide (97%) was purchased from Alfa Aesar. Anhydrous DMF and TREAT·HF was purchased from J&K Scientific. Other chemicals for substrates preparation were purchased from Acros, J&K Scientific, Aldrich and Dikemann.

Instrumentation. Proton nuclear magnetic resonance spectra (¹H NMR) spectra, carbon nuclear magnetic resonance spectra (¹³C NMR) and fluorine nuclear magnetic resonance spectra (¹⁹F NMR) were recorded at 23 °C on a Bruker 400 spectrometer in CDCl₃ (400 MHz for ¹H, 101 MHz for ¹³C and 376 MHz for ¹⁹F) and Bruker 500 spectrometer in CDCl₃ (500 MHz for ¹H, 126 MHz for ¹³C and 470 MHz for ¹⁹F). Chemical shifts for protons were reported as parts per million in δ scale using solvent residual peak (CHCl₃: 7.26 ppm) or tetramethylsilane (0.00 ppm) as internal standards. Chemical shifts of ¹³C NMR spectra were reported in ppm from the central peak of CDCl₃ (77.16 ppm) on the δ scale. Chemical shifts of ¹⁹F NMR are reported as parts per million in δ scale using benzotrifluoride (-63.72 ppm) as internal standards. Data are represented as follows: chemical shift, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, qn = quintuplet, sx = sextet, sp = septuplet, m = multiplet, br = broad), and coupling constant (*J*, Hz). High resolution mass spectra (HRMS) were obtained on a Bruker SolariX 9.4T ICR Mass Spectrometer or Thermo Q Exactive Focus Orbitrap Mass Spectrometer. The melting points were obtained on a Shimadzu GCMS-QP2010 SE GC MS Spectrometer.

Experimental Procedures:

Modified procedure for the preparation of pentafluoroethane-derived [CuCF₂CF₃] reagent:¹

CuCl + 2 *t*-BuOK
$$(1. DMF)$$

$$2. CF_3CF_2H$$

$$3. Et_3N:3HF$$
(stablization)
$$CuCF_2CF_3$$

In a glove box, to a glass tube was charged CuCl (200 mg, 2.0 mmol), *t*-BuOK (472 mg, 4.0 mmol) and a stirrer bar. The flask was sealed with a septum, brought out of the glove box and put under an argon atmosphere. Degassed DMF (1.0 mL) was added *via* syringe and the mixture was vigorously stirred at room temperature for 30 min. Then pentafluoroethane (CF₃CF₂H) was bubbled into the mixture by using a needle connected to the CF₃CF₂H cylinder at room temperature for 2.5 min. After removing the CF₃CF₂H inlet, the mixture was stirred for 5 min and Et₃N·3HF (326 μ L, 2.0 mmol) was slowly added under argon and the mixture was stirred for another 5 min. A slightly greyish yellow solution with white precipitates was obtained as the [CuCF₂CF₃] solution in DMF (~87%, ~0.90 M).

¹⁹F NMR of freshly prepared CuCF₂CF₃ reagent (in DMF, under argon, internal standard = PhCF₃):

¹ Lishchynskyi, A.; Grushin, V. V. J. Am. Chem. Soc. 2013, 135, 12584.

¹⁹F NMR of the CuCF₂CF₃ reagent (0.1 M in DMF) over time when open to air:

General procedure (cf. Scheme 2):

$$\begin{array}{c} \mathsf{R} & \overbrace{\mathbf{1}} & \overbrace{\mathsf{DMF}(0.3 \text{ M}), \text{ rt}, 24 \text{ h}}^{\mathsf{CuCF}_2\mathsf{CF}_3} (3.0 \text{ equiv}) \\ \mathsf{DMF}(0.3 \text{ M}), \text{ rt}, 24 \text{ h} \\ \text{open to air} & \mathbf{2} \end{array}$$

Under air, to a glass tube equipped with a magnetic stir bar and alkene **1** (0.3 mmol) was added above freshly prepared [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF) at 0 °C. Then the tube was warmed to room temperature and stirred for 24 h. The color slowly changed from greyish yellow to dark red. The E/Z ratio was determined by ¹⁹F NMR of the crude mixture. The reaction mixture was quenched with aq. sat. sodium potassium tartrate, extracted with diethyl ether three times. The organic layers were combined, washed with water then brine, dried over anhydrous Na₂SO₄, filtered and concentrated by rotary evaporator. The crude product was purified by flash column chromatography on silica gel to afford the desired product **2**.

Substrates 1:

Alkenes 1a-1p, 1r, 1w-1ab, 10, 12 were synthesized according to literature procedure.² 1q, 1s-1v, 1ac-1ad, 8 were commercially available.

^{2 (}a) Yang, X.; Tsui, G. C. Org. Lett. 2019, 21, 1521. (b) Ye, K.-Y.; McCallum, T.; Lin, S. J. Am. Chem. Soc. 2019, 141, 9548–9554.
(c) Rigby, C. L.; Dixon, D. J. Chem. Commun. 2008, 32, 3798.

1 mmol scale reaction (cf. Scheme 2, compound 2b):

Large scale (14 mmol) preparation of pentafluoroethane-derived [CuCF2CF3] reagent:

In a glove box, to a 25 mL round-bottom flask was charged CuCl (1.40 g, 14 mmol), *t*-BuOK (3.30 g, 28.0 mmol) and a stirrer bar. The flask was sealed with a septum, brought out of the glove box and put under an argon atmosphere. Degassed DMF (7.0 mL) was added *via* syringe with a water bath, then the water bath was removed and the mixture was vigorously stirred at room temperature for 45 min. Pentafluoroethane (CF₃CF₂H) was bubbled into the mixture by using a needle connected to the CF₃CF₂H cylinder at room temperature for 5 min. After removing the CF₃CF₂H inlet, the mixture was stirred for 5 min and Et₃N·3HF (2.30 mL, 14 mmol) was slowly added under argon and the mixture was stirred for another 5 min. A slightly greyish yellow solution with white precipitates was obtained as the [CuCF₂CF₃] solution in DMF (~0.90 M).

Under air, to a 50 mL glass tube equipped with a magnetic stir bar and alkene **1b** (234 mg, 1.0 mmol) was added above freshly prepared [CuCF₂CF₃] (3.30 mL, 3.0 mmol in DMF) at 0 °C. Then the tube was warmed to room temperature and stirred for 24 h. The color slowly changed from greyish yellow to dark red. The E/Z ratio was determined by ¹⁹F NMR of the crude mixture. The reaction mixture was quenched with aq. sat. sodium potassium tartrate, extracted with diethyl ether three times. The organic layers were combined, washed with water then brine, dried over anhydrous Na₂SO₄, filtered and concentrated by rotary evaporator. The crude product was purified by flash column chromatography on silica gel to afford the desired product **2b** as a colorless oil (289 mg, 0.82 mmol, 82%, E/Z = 95:5, allylic : vinylic = 27 : 1). R_f = 0.40 (Hexane : Et₂O = 5 : 1).

Further transformations (cf. Scheme 3):

To a 10 mL round-bottom flask equipped with a magnetic stir bar and **2b** (70.4 mg, 0.2 mmol) was added MeOH (4.0 mL) and Pd/C (21.1 mg, 0.02 mmol), the mixture was evacuated and refilled with H₂ for three times. Then stirred at room temperature for 12 h under a H₂ balloon. After completion (monitored by TLC), filtered and washed with dichloromethane for three times, the combined filtrate was concentrated by rotary evaporator. The crude residue was directly purified by flash column chromatography on silica gel to afford the desired product **3** (0.18 mmol, 63.7 mg, 90 %) as a colorless oil. R_f = 0.5 (hexane : Et₂O = 5 : 1). ¹H NMR (400 MHz, CDCl₃): δ 7.99 (d, *J* = 8.8 Hz, 2H), 6.91 (d, *J* = 8.8 Hz, 2H), 4.28 (t, *J* = 6.6 Hz, 2H), 3.84 (s, 3H), 2.08-1.94 (m, 2H), 1.77 (m, 2H), 1.61 (m, 2H), 1.51-1.41 (m, 4H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 166.5, 163.4, 131.6, 123.2, 119.3 (qt, *J*_{C-F} = 286.3 Hz, *J*_{C-F} = 36.6 Hz), 115.9 (tq, *J*_{C-F} = 252.3 Hz, *J*_{C-F} = 37.6 Hz), 113.7, 64.6, 55.4, 30.7 (t, *J*_{C-F} = 22.2 Hz), 28.8, 28.6, 25.8, 20.3 (t, *J*_{C-F} = 3.4 Hz) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ -86.43 (s, 3F), -119.21 (t, *J* = 18.4 Hz, 2F). HRMS m/z (ESI): calcd. for C₁₆H₁₉F₅O₃Na [M+Na]⁺ : 377.1147; found: 377.1144.

Followed a literature procedure ³: a solution of *m*-CPBA (119 mg, 0.48 mmol) in CHCl₃ (1.6 mL) was added to a solution of **2b** (70.4 mg, 0.2 mmol) in CHCl₃ (0.6 mL) at 0 °C and then warmed to room temperature. After the solution was stirred for 12 h, CH₂Cl₂ was added, the organic phase was washed with sat. aq. Na₂S₂O₃ and NaHCO₃, then brine, dried over anhydrous Na₂SO₄, filtered and concentrated by rotary evaporator. The residue was purified by flash column chromatography on silica gel (hexane/Et₂O) and obtained product **4** (0.14 mmol, 52.2 mg, 71 %, dr = 93 : 7) as a yellow solid, melting point: 38.0–38.7 °C, R_f= 0.2 (hexane : Et₂O = 5 : 1). Major isomer: ¹H NMR (400 MHz, CDCl₃): δ 7.97 (d, *J* = 8.8 Hz, 2H), 6.90 (d, *J* = 8.8 Hz, 2H), 4.32 (td, *J* = 6.4 Hz, *J* = 2.0 Hz, 2H), 3.83 (s, 3H), 2.98 (t, *J* = 5.6 Hz, 1H), 2.84 (t, *J* = 5.6 Hz, 1H), 2.44-2.29 (m, 1H), 2.25-2.11 (m, 1H), 1.96-1.85 (m, 2H), 1.82-1.74 (m, 1H), 1.71-1.64 (m, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 166.3, 163.5, 131.6, 122.7, 119.2 (qt, *J*_{C-F} = 286.2 Hz, *J*_{C-F} = 35.8 Hz), 114.9 (tq, *J*_{C-F} = 253.7 Hz, *J*_{C-F} = 38.7 Hz), 113.7, 63.9, 57.4, 55.4, 50.7 (t, *J*_{C-F} = 5.2 Hz), 34.6 (t, *J*_{C-F} = 21.7 Hz), 28.4, 25.2 ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ -86.37 (s, 3F), -117.15 (m, 2F). HRMS m/z (ESI): calcd. for C₁₆H₁₇F₅O₄Na [M+Na]⁺ : 391.0939; found: 391.0937.

Followed a literature procedure ³: a glass tube charge with a stirred bar was added **2b** (70.4 mg,

³ Xu, J.; Fu, Y.; Luo, D.-F.; Jiang, Y.-Y.; Xiao, B.; Liu, Z.-J.; Gong, T.-J.; Liu, L. J. Am. Chem. Soc. 2011, 133, 15300.

0.2 mmol), TBAB (3.2 mg, 0.01 mmol) and 17 M aq. NaOH (1.2 mL, 20.0 mmol), then CHCl₃ (0.3 mL/0.3 mL) was added in two portions. The mixture was stirred at room temperature until **2b** was fully consumed (monitored by GC MS). Diluted with H₂O and CH₂Cl₂, extracted with CH₂Cl₂ for three times. The combined organic phase was washed with H₂O and brine, dried over anhydrous Na₂SO₄, filtered and concentrated by rotary evaporator. The residue was purified by flash column chromatography on silica gel (hexane/Et₂O) and obtained product **5** (0.18 mmol, 78.1 mg, 90 %, dr = 93 : 7) as a yellowish liquid, R_f= 0.5 (hexane : Et₂O = 5 : 1). Major isomer: ¹H NMR (400 MHz, CDCl₃): δ 7.98 (d, *J* = 8.8 Hz, 2H), 6.91 (d, *J* = 8.8 Hz, 2H), 4.34 (t, *J* = 6.4 Hz 2H), 3.84 (s, 3H), 2.64-2.50 (m, 1H), 2.16-2.02 (m, 1H), 2.00-1.91 (m, 2H), 1.75 (q, *J* = 7.3 Hz, 2H), 1.47-1.37 (m, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 166.4, 163.5, 131.7, 122.7, 119.0 (qt, *J*_{C-F} = 286.5 Hz, *J*_{C-F} = 35.9 Hz), 115.2 (tq, *J*_{C-F} = 252.9 Hz, *J*_{C-F} = 38.1 Hz), 113.7, 64.2, 63.9, 55.5, 35.3, 31.6 (t, *J*_{C-F} = 21.9 Hz), 28.1 (t, *J*_{C-F} = 4.0 Hz), 27.5, 26.8 ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ -86.23 (s, 3F), -118.10 (m, 2F). HRMS m/z (ESI): calcd. for C₁₇H₁₇Cl₂F₅O₃ [M+Na]⁺ : 457.0367; found: 457.0368.

Followed a literature procedure ³: a glass tube equipped with a stirred bar was charge with t-BuOH (1.0 mL), H₂O (1.0 mL), AD-mix-α (280 mg) and CH₃SO₂Na (19.0 mg, 0.2 mmol). The mixture was stirred until both phases were clear. Then **2b** (70.4 mg, 0.2 mmol) was added at once and the heterogenous slurry was stirred until the 2b was fully consumed. The reaction was quenched at 0 °C by adding Na₂SO₃ (3.0 g), then warm to room temperature and stirred for 1 h, extracted with EtOAc for three times. The organic layers were combined, washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated by rotary evaporator. The crude residue was purified by flash column chromatography on silica gel (hexane/acetone) and obtained product 6 (0.18 mmol, 71.0 mg, 92 %, dr > 20 : 1) as a white solid, melting point: 82.6-83.4 °C, $R_f = 0.4$ (hexane : acetone = 5 : 1). Major isomer: ¹**H NMR** (400 MHz, CDCl₃): δ 7.94 (d, J = 8.8 Hz, 2H), 6.88 (d, J = 8.8 Hz, 2H), 4.30 (t, J =6.4 Hz, 2H), 3.99 (s, 1H), 3.82 (s, 3H), 3.54 (s, 1H), 3.33 (d, J = 17.2 Hz, 1H), 3.13 (d, J = 12.8 Hz, 1H), 2.49-2.19 (m, 2H), 1.98-1.89 (m, 1H), 1.88-1.78 (m, 1H), 1.66 (q, J = 7.2 Hz, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 167.0, 163.6, 131.7, 122.4, 119.0 (qt, *J*_{C-F} = 286.4 Hz, *J*_{C-F} = 36.2 Hz), 115.8 (tq, *J*_{C-F} = 254.0 Hz, J_{C-F} = 38.1 Hz), 113.7, 73.8, 67.6, 64.6, 55.5, 35.0 (t, J_{C-F} = 20.6 Hz), 29.9, 25.2 ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ -86.83 (s, 3F), -117.77 (m, 2F). HRMS m/z (ESI): calcd. for C₁₆H₁₉F₅O₅ [M+Na]⁺: 409.1045; found: 409.1042.

Followed a literature procedure ⁴: to a glass tube charges with a stirred bar was added $Pd(OAc)_2$ (3.4 mg, 0.015 mmol), 1,4-benzoquinone (21.6 mg, 0.2 mmol). A mixture of MeCN (0.88 mL) and water (0.10 mL) was added followed by addition of 32% aq. HBF₄ solution (60 µL). Then **2b** (70.4 mg, 0.2 mmol) was added at once and the homogeneous dark red solution was stirred for 24 h at 40

⁴ Lerch, M. M.; Morandi, B.; Wickens, Z. K.; Grubbs, R. H. Angew. Chem., Int. Ed. 2014, 53, 8654.

°C. Diluted with sat. aq. NaCl solution, extracted with CH₂Cl₂. The combined organic phases were dried over anhydrous Na₂SO₄, filtered and concentrated by rotary evaporator. The crude product was then further purified by flash column chromatography on silica gel (hexane/EtOAc) to furnish the desired pure product **7** (0.10 mmol, 38.3 mg, 52 %, rr > 20 : 1) as a white solid, melting point: 64.5–65.2 °C, R_f= 0.3 (hexane : EtOAc = 5 : 1). ¹**H NMR** (400 MHz, CDCl₃): δ 7.95 (d, *J* = 8.8 Hz, 2H), 6.90 (d, *J* = 8.8 Hz, 2H), 4.30 (t, *J* = 6.2 Hz, 2H), 3.84 (s, 3H), 2.72 (t, *J* = 7.8 Hz, 2H), 2.62 (t, *J* = 7.2 Hz, 2H), 2.41-2.28 (m, 2H), 2.10-2.03 (m, 2H) ppm. ¹³**C NMR** (101 MHz, CDCl₃): δ 206.1, 166.4, 163.6, 131.7, 122.5, 119.1 (qt, *J*_{C-F} = 286.2 Hz, *J*_{C-F} = 36.3 Hz), 115.6 (tq, *J*_{C-F} = 252.6 Hz, *J*_{C-F} = 38.0 Hz), 113.7, 63.7, 55.5, 39.2, 33.6, 24.8 (t, *J*_{C-F} = 22.1 Hz), 23.0 ppm. ¹⁹**F NMR** (376 MHz, CDCl₃): δ -86.49 (s, 3F), -119.30 (t, *J* = 18.4 Hz, 2F). **HRMS** m/z (ESI): calcd. for C₁₆H₁₇F₅O₄Na [M+Na]⁺ : 391.0939; found: 391.0936.

Mechanistic studies:

TEMPO trapping experiments (cf. Eqs. 4a and 4b).

Under air, to a glass tube equipped with a magnetic stir bar was added alkene **1a** (20.4 mg, 0.1 mmol), TEMPO (15.6 mg for 1.0 equiv; 31.2 mg for 2.0 equiv; 46.8 mg for 3.0 equiv), then freshly prepared [CuCF₂CF₃] (0.33 mL, 0.90 mmol in DMF) was added dropwise at 0 °C. The tube was warmed to room temperature and stirred for 24 h. The crude yield of each equation was analyzed by ¹⁹F NMR using benzotrifluoride as the internal standard. **TEMPO-CF₂CF₃:** ¹⁹F **NMR** (376 MHz, CDCl₃): δ - 84.80 (s, 3F), -85.81 (s, 2F). **HRMS** m/z (APCI): calcd. for C₁₁H₁₉F₅NO [M+H]⁺: 276.1381; found: 276.1380. The spectral data are in full accordance with the literature report.⁵

$$\begin{array}{ccc} \textbf{CuCF_2CF_3} & + & \textbf{TEMPO} \\ (1.0 \text{ equiv}) & & & \textbf{TEMPO-CF_2CF_3} \\ & & \textbf{air: } 66\% (^{19}\text{F NMR}) \\ & & \textbf{argon: } 0\% (^{19}\text{F NMR}) \end{array}$$

Under air or argon, to a glass tube equipped with a magnetic stir bar and TEMPO (46.8 mg, 0.3 mmol) was added freshly prepared [CuCF₂CF₃] (0.33 mL, 0.90 mmol in DMF) dropwise at 0 °C. Then the tube was warmed to room temperature and stirred for 24 h. The crude yield of under air or argon condition was analyzed by ¹⁹F NMR using benzotrifluoride as the internal standard.

^{5 (}a) Hartmann, M.; Li, Y.; Studer, A. Org. Biomol. Chem. 2016, 14, 206; (b) Xu, J.; Qiao, L.; Ying, B.; Zhu, X.; Shen, C.; Zhang, P. Org. Chem. Front. 2017, 4, 1116.

Using Cu(OTf)2 and TMSCF2CF3 (cf. Eq. 4c):

Under argon, to a glass tube equipped with a magnetic stir bar was added **1a** (20.4 mg, 0.1 mmol), Cu(OTf)₂ (108.5 mg, 0.3 mmol), KF (17.4 mg, 0.3 mmol), Et₃N·HF (32.6 μ L, 0.2 mmol) and degassed DMF (0.33 mL), followed by addition of TMSCF₂CF₃ (53 μ L, 0.3 mmol) dropwise at 0 °C. Then the tube was warmed to room temperature and stirred for 24 h. The crude yield was analyzed by ¹F NMR using benzotrifluoride as the internal standard.

Radical clock experiments (cf. Eqs. 4d and 4e).

Under air, to a glass tube equipped with a magnetic stir bar and **8** (72.0 mg, 0.3 mmol) was added freshly prepared [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF) dropwise at 0 °C. Then the tube was warmed to room temperature and stirred for 24 h. The reaction mixture was quenched with aq. sat. sodium potassium tartrate, extracted with diethyl ether three times. The organic layers were combined, washed with water then brine, dried over anhydrous Na₂SO₄, filtered and concentrated by rotary evaporator. The crude product was purified by flash column chromatography on silica gel (hexane/Et₂O) to afford an inseparable mixture of **9** and **8** (**9** : 0.21 mmol, dr = 9 : 1, determined by GC MS; **8** : 0.066 mmol, **9** + **8** total 114 mg, **9** : **8** = 3.2 : 1) as a colorless oil. R_f= 0.5 (hexane : EtOAc = 5 : 1). Compound **9** (major diasteromer): ¹H NMR (400 MHz, CDCl₃): δ 4.19-4.11 (m, 4H), 2.55-2.49 (m, 4H), 2.25-2.18 (m, 2H), 2.03-1.94 (m, 4H), 1.23-1.19 (m, 6H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 172.5, 172.0, 119.1 (qt, *J_C*, *F* = 286.3 Hz, *J_{C-F}* = 36.2 Hz), 115.9 (tq, *J_{C-F}* = 254.0 Hz, *J_{C-F}* = 37.7 Hz), 62.0, 61.9, 38.7, 38.7, 35.4, 29.6 (t, *J_{C-F}* = 21.6 Hz), 14.0, 13.9 ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ -86.91 (s, 3F), -118.26 (m, 2F). HRMS m/z (APCI): calcd. for C₁₇H₂₁F₁₀O₄ [M+H]⁺ : 479.1275; found: 479.1275.

Under air, to a glass tube equipped with a magnetic stir bar and **10** (51.6 mg, 0.3 mmol) was added freshly prepared [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF) dropwise at 0 °C. Then the tube was warmed to room temperature and stirred for 24 h. The reaction mixture was quenched with aq. sat. sodium potassium tartrate, extracted with diethyl ether three times. The organic layers were combined, washed

with water then brine, dried over anhydrous Na₂SO₄, filtered and concentrated by rotary evaporator. The crude product was purified by flash column chromatography on silica gel (hexane) to afford an inseparable mixture of **11** and **11'** (total about 0.12 mmol, 38 mg) as a colorless oil. $R_f = 0.8$ (hexane : Et₂O = 10 : 1). Major isomer of **11**: ¹H **NMR** (400 MHz, CDCl₃): δ 7.56 (t, J = 7.4 Hz, 2H), 7.49-7.43 (m, 3H), 6.53-6.43 (m, 1H), 6.39-6.28 (m, 1H), 6.06-5.99 (m, 1H), 5.79-5.72 (m, 1H), 3.11-3.04 (m, 2H), 3.01-2.97 (m, 2H), 2.69 (q, J = 7.7 Hz, 2H) ppm. ¹³C **NMR** (101 MHz, CDCl₃): δ 141.7, 137.5, 135.2, 129.7, 128.5, 128.5, 126.1, 119.2 (qt, $J_{C-F} = 286.9$ Hz, $J_{C-F} = 36.0$ Hz), 114.9 (tq, $J_{C-F} = 253.2$ Hz, $J_{C-F} = 36.4$ Hz), 117.4 (t, $J_{C-F} = 17.6$ Hz), 35.7, 34.7 (t, $J_{C-F} = 22.6$ Hz), 34.5 ppm. ¹⁹F **NMR** (376 MHz, CDCl₃): δ -85.97 (s, 3F), -118.22 (t, J = 17.7 Hz, 2F). **HRMS** m/z (APCI): calcd. for C₁₅H₁₆F₅ [M+H]⁺ : 291.1167; found: 291.1167. **Compound 11'**: **HRMS** m/z (ESI): calcd. for C₁₇H₁₇F₁₀ [M+H]⁺ : 411.1165; found: 411.1169.

Control experiments (cf. Eq. 4f).

Under air, to a glass tube equipped with a magnetic stir bar and **2a** and **2a'** (32.2 mg, 0.1 mmol, **2a** : **2a'** = 48 : 52) was added freshly prepared [CuCF₂CF₃] (0.33 mL, 0.90 mmol in DMF) dropwise at 0 °C. The tube was warmed to room temperature and stirred for 24 h. The crude **2a/2a'** ratio was analyzed by ¹⁹F NMR using benzotrifluoride as the internal standard.

Preparation of 2a': Under air, to a glass tube equipped with a magnetic stir bar was added **1a** (20.4 mg, 0.1 mmol) and DMF (0.78 mL). Then freshly prepared [CuCF₂CF₃] (0.22 mL, 0.90 mmol in DMF, stabilized with 0.53 equiv Et₃N·HF) was added dropwise at room temperature. The tube was stirred for 24 h at room temperature. Quenched with aq. sat. sodium potassium tartrate, extracted with diethyl ether three times. The organic layers were combined, washed with water then brine, dried over anhydrous Na₂SO₄, filtered and concentrated by rotary evaporator. The crude product was purified by flash column chromatography on silica gel (hexane/Et₂O) to afford an inseparable mixture of **2a** and **2a'** (15.4 mg, 0.048 mmol, **2a : 2a' =** 48 : 52, R_f = 0.6 (hexane : Et₂O = 8 : 1)) as a colorless oil. **Compound 2a':** ¹**H NMR** (400 MHz, CDCl₃): δ 8.05 (d, *J* = 7.5 Hz, 2H), 7.55 (t, *J* = 7.5 Hz, 1H), 7.44 (t, *J* = 7.5 Hz, 2H), 6.47-6.39 (m, 1H), 5.67-5.57 (m, 1H), 4.34 (t, *J* = 6.4 Hz, 2H), 2.30-2.22 (m, 2H), 1.82-1.77 (m, 2H), 1.67-1.59 (m, 2H) ppm. ¹³**C NMR** (101 MHz, CDCl₃): δ 166.7, 142.5 (t, *J_{C-F}* = 8.7 Hz), 133.0, 130.5, 129.6, 128.5, 119.1 (qt, *J_{C-F}* = 286.3 Hz, *J_{C-F}* = 38.5 Hz), 117.2 (t, *J_{C-F}* = 23.2 Hz), 112.2 (tq, *J_{C-F}* = 250.7 Hz, *J_{C-F}* = 38.5 Hz), 64.5, 31.6, 28.2, 24.7 ppm. ¹⁹**F NMR** (376 MHz, CDCl₃): *E* isomer: δ -86.53 (s, 3F), -116.24 (d, *J* = 11.7 Hz, 2F). **HRMS** m/z (APCI): calcd. for C₁₅H₁₆F₅O₂ [M+H]⁺ : 323.1065; found: 323.1066.

Using D-labeled substrate (cf. Eq. 4g):

Under air, to a glass tube equipped with a magnetic stir bar and alkene **12** (40.2 mg, 0.3 mmol, 92% D incorporation) was added freshly prepared [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF) at 0 °C. Then was warmed to room temperature and stirred for 24 h. Quenched with aq. sat. sodium potassium tartrate, extracted with diethyl ether three times. The organic layers were combined, washed with water then brine, dried over anhydrous Na₂SO₄, filtered and concentrated by rotary evaporator. The crude residue was purified by flash column chromatography on silica gel (hexane) to afford the desired product **13** (0.19 mmol, 46.9 mg, 90% D incorporation, R_f = 0.6 (hexane)) as a colorless oil. **Compound 13:** ¹**H NMR** (400 MHz, CDCl₃): δ 7.40 (t, *J* = 7.4 Hz, 2H), 7.27-7.20 (m, 3H), 5.90 (dt, *J* = 15.2 Hz, *J* = 6.8 Hz, 1H), 5.51 (d, *J* = 15.2 Hz, 1H), 3.44 (d, *J* = 6.8 Hz, 2H) ppm. ¹³**C NMR** (101 MHz, CDCl₃): δ 139.6, 137.4, 128.7, 126.4, 119.3 (qt, *J*_{C-F} = 286.6 Hz, *J*_{C-F} = 36.3 Hz), 118.1, 114.9 (tq, *J*_{C-F} = 252.8 Hz, *J*_{C-F} = 36.7 Hz), 39.1 ppm. (one carbon missing due to overlap) ¹⁹**F NMR** (376 MHz, CDCl₃): δ -85.94 (s, 3F), -118.56 (s, 2F). **HRMS** m/z (APCI): calcd. for C₁₂H₉D₂F₅ [M]⁺: 253.0979; found: 253.0982.

Table S1. Optimization studies^a

entry	equiv of Et ₃ N·3HF (based on Cu)	equiv of CuCF ₂ CF ₃	oxidant (equiv)	conc. (M)	yield of 2a+2a' (%) ^b	ratio of 2a:2a' ^b
1	0.53	2.0	air	0.1	59	1:1.3
2	0.75	2.0	air	0.1	59	5.5:1
3	1.0	2.0	air	0.1	59	19:1
4	1.2	2.0	air	0.1	42	19:1
5	1.0	2.0	air	0.2	67	21:1
6	1.0	2.0	air	0.3	69	22:1
7	1.0	2.0	air	0.4	71	22:1
8°	1.0	2.0	air	0.4	78	21:1
9 ^{c,d}	1.0	2.0	air	0.4	56	25:1
10 ^{c,e}	1.0	2.0	none	0.4	<5	-
11 ^{c,e}	1.0	2.0	AgOAc (2.0)	0.4	37	14:1
12 ^{c,e}	1.0	2.0	PhI(OAc) ₂ (2.0)	0.4	77	11:1
13 ^{c,e}	1.0	2.0	DDQ (2.0)	0.4	<5	-
14 ^{c,e}	1.0	2.0	1,4-Benzoquinone	0.4	<5	-
			(2.0)			
15 ^{c,e}	1.0	2.0	Di-tert-butyl	0.4	28	27:1
			peroxide (2.0)			
16°	1.0	2.0	O ₂ balloon	0.4	46	15:1
17 ^{c,f}	1.0	2.0	air	0.4	64	16:1
18°	1.0	1.5	air	0.4	68	19:1
19°	1.0	3.0	air	0.3	88 (87) ^g	20:1
20°	1.0	4.0	air	0.23	87	16:1

^aUnless specified otherwise, reactions were carried out using 0.1 mmol **1a** at room temperature open to air. ^bDetermined by ¹H NMR analysis of the crude mixture. ^cCuCF₂CF₃ was added at 0 ^oC then the reaction mixture was warmed to room temperature. ^dCuCF₂CF₃ was stabilized with 0.33 equiv Olah's reagent (HF-pyridine). ^eUnder argon. ^fAt 50 ^oC. ^gIsolated yield at 0.3 mmol scale (**2a**:**2a'** = 20:1; *E/Z* of **2a** = 92:8).

Characterization Data:

2a: (E)-7,7,8,8,8-pentafluorooct-4-en-1-yl benzoate. Prepared according to the general procedure. Reaction was run using 1a (61.2 mg, 0.3 mmol), [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/Et₂O) and obtained a colorless oil (0.26 mmol, 84.0 mg, 87 %, E/Z = 92 : 8, allylic : vinylic = 20 : 1), R_f = 0.6 (hexane : Et₂O = 8 : 1). ¹H NMR (500 MHz, CDCl₃): δ 8.05 (d, J = 7.5 Hz, 2H), 7.55 (t, J = 7.5 Hz, 1H), 7.44 (t, J = 7.5 Hz, 2H), 5.78-5.72 (m, 1H), 5.49-5.43 (m, 1H), 4.33 (t, J = 6.5 Hz, 2H), 2.74 (td, J = 17.6 Hz, J = 7.5 Hz, 2H), 2.24 (q, J = 7.2 Hz, 2H), 1.87 (m, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 166.6, 137.4, 133.0, 130.4, 129.6, 128.4, 119.3 (qt, $J_{C-F} = 286.1$ Hz, $J_{C-F} = 36.3$ Hz), 117.7 (t, $J_{C-F} = 4.3$ Hz), 114.8 (tq, $J_{C-F} = 252.3$ Hz, $J_{C-F} = 37.0$ Hz), 64.2, 34.6 (t, $J_{C-F} = 22.5$ Hz), 29.1, 28.1 ppm. ¹⁹F NMR (470 MHz, CDCl₃): *E* isomer: δ -85.93 (s, 3F), -118.37 (t, J = 17.4 Hz, 2F); *Z* isomer: δ -86.16 (s, 3F), -118.21 (t, J = 17.9 Hz, 2F). HRMS m/z (ESI): calcd. for C₁₅H₁₅F₅O₂Na [M+Na]⁺ : 345.0884; found: 345.0881.

2b: (E)-7,7,8,8,8-pentafluorooct-4-en-1-yl 4-methoxybenzoate. Prepared according to the general procedure. Reaction was run using 1b (70.2 mg, 0.3 mmol), [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/Et₂O) and obtained a colorless oil (0.26 mmol, 89.8 mg, 85 %, E/Z = 91 : 9, allylic : vinylic = 23 : 1), R_f = 0.5 (hexane : Et₂O = 5 : 1). ¹H NMR (400 MHz, CDCl₃): δ 7.99 (d, J = 8.4 Hz, 2H), 6.91 (d, J = 8.4 Hz, 2H), 5.78-5.70 (m, 1H), 5.48-5.41 (m, 1H), 4.29 (t, J = 6.6 Hz, 2H), 3.83 (d, J = 1.2 Hz, 3H), 2.74 (td, J = 17.6 Hz, J = 7.2 Hz, 2H), 2.22 (q, J = 7.2 Hz, 2H), 1.84 (m, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 166.4, 163.5, 137.5, 131.6, 122.9, 119.2 (qt, $J_{C-F} = 286.6$ Hz, $J_{C-F} = 36.4$ Hz), 117.6 (t, $J_{C-F} = 4.3$ Hz), 114.8 (tq, $J_{C-F} = 252.7$ Hz, $J_{C-F} = 37.2$ Hz), 113.7, 63.9, 55.4, 34.6 (t, $J_{C-F} = 22.5$ Hz), 29.1, 28.2 ppm. ¹⁹F NMR (470 MHz, CDCl₃): *E* isomer: δ -85.78 (s, 3F), -118.23 (t, J = 17.4 Hz, 2F); *Z* isomer: δ -85.99 (s, 3F), -118.05 (t, J = 17.9 Hz, 2F). HRMS m/z (ESI): calcd. for C₁₆H₁₇F₅O₃Na [M+Na]⁺ : 375.0990; found: 375.0987.

2c: (E)-7,7,8,8,8-pentafluorooct-4-en-1-yl 4-cyanobenzoate. Prepared according to the general procedure. Reaction was run using 1c (68.7 mg, 0.3 mmol), [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/Et₂O) and obtained a colorless oil (0.23 mmol, 79.1 mg, 76 %, E/Z = 92 : 8, allylic : vinylic > 50 : 1), R_f= 0.4 (hexane : Et₂O = 5 : 1). ¹H NMR (500 MHz, CDCl₃): δ 8.12 (d, J = 8.0 Hz, 2H), 7.73 (d, J = 8.0 Hz, 2H), 5.76-5.70 (m, 1H), 5.48-5.42 (m, 1H), 4.34 (t, J = 6.5 Hz, 2H), 2.73 (td, J = 17.6 Hz, J = 7.0 Hz, 2H), 2.23 (q, J = 7.2 Hz, 2H), 1.87 (m, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 165.0, 137.1, 134.2, 132.3, 130.1, 119.3 (qt, $J_{C-F} = 286.1$ Hz, $J_{C-F} = 36.2$ Hz), 118.0, 117.9 (t, $J_{C-F} = 4.2$ Hz), 116.4, 114.8 (tq, $J_{C-F} = 252.5$ Hz, $J_{C-F} = 37.0$ Hz), 65.0, 34.5 (t, $J_{C-F} = 22.4$ Hz), 29.0, 27.9 ppm. ¹⁹F NMR (470 MHz, CDCl₃): E isomer: δ -85.78

(s, 3F), -118.22 (t, J = 17.4 Hz, 2F); Z isomer: δ -86.01 (s, 3F), -118.05 (t, J = 17.9 Hz, 2F). **HRMS** m/z (APCI): calcd. for C₁₆H₁₅F₅NO₂ [M+H]⁺ : 348.1018; found: 348.1017.

2d: (E)-7,7,8,8,8-pentafluorooct-4-en-1-yl 4-fluorobenzoate. Prepared according to the general procedure. Reaction was run using 1d (66.6 mg, 0.3 mmol), [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/Et₂O) and obtained a colorless oil (0.24 mmol, 82.6 mg, 81 %, E/Z = 92 : 8, allylic : vinylic = 24 : 1), R_f = 0.6 (hexane : Et₂O = 8 : 1). ¹H NMR (500 MHz, CDCl₃): δ 8.06-8.03 (m, 2H), 7.73 (t, J = 8.0 Hz, 2H), 5.77-5.71 (m, 1H), 5.48-5.42 (m, 1H), 4.31 (t, J = 6.3 Hz, 2H), 2.74 (td, J = 17.5 Hz, J = 7.0 Hz, 2H), 2.23 (q, J = 7.2 Hz, 2H), 1.86 (m, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 165.9 (d, $J_{C-F} = 254.8$ Hz), 165.7, 137.4, 132.2 (d, $J_{C-F} = 9.3$ Hz), 126.7 (d, $J_{C-F} = 2.9$ Hz), 119.3 (qt, $J_{C-F} = 286.6$ Hz, $J_{C-F} = 36.3$ Hz), 117.8 (t, $J_{C-F} = 4.5$ Hz), 115.6 (d, $J_{C-F} = 22.1$ Hz), 114.9 (tq, $J_{C-F} = 252.9$ Hz, $J_{C-F} = 37.2$ Hz), 64.4, 34.6 (t, $J_{C-F} = 22.5$ Hz), 29.1, 28.1 ppm. ¹⁹F NMR (470 MHz, CDCl₃): E isomer: δ -85.78 (s, 3F), -106.79 (m, 1F), -118.22 (t, J = 17.4 Hz, 2F); Z isomer: δ -86.01 (s, 3F), -106.71 (m, 1F), -118.06 (t, J = 17.7 Hz, 2F). HRMS m/z (APCI): calcd. for C₁₅H₁₅F₆O₂ [M+H]⁺ : 341.0971; found: 341.0971.

2e: (E)-7,7,8,8,8-pentafluorooct-4-en-1-yl 4-chlorobenzoate. Prepared according to the general procedure. Reaction was run using 1e (71.4 mg, 0.3 mmol), [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/Et₂O) and obtained a colorless oil (0.25 mmol, 87.6 mg, 82 %, E/Z = 92 : 8, allylic : vinylic = 48 : 1), R_f = 0.6 (hexane : Et₂O = 8 : 1). ¹H NMR (500 MHz, CDCl₃): δ 7.96 (d, J = 8.0 Hz, 2H), 7.40 (d, J = 8.0 Hz, 2H), 5.77-5.71 (m, 1H), 5.48-5.42 (m, 1H), 4.31 (t, J = 6.5 Hz, 2H), 2.74 (td, J = 17.5 Hz, J = 7.0 Hz, 2H), 2.23 (q, J = 7.2 Hz, 2H), 1.86 (m, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 165.8, 139.5, 137.3, 131.0, 128.9, 128.8, 119.2 (qt, $J_{C-F} = 286.1$ Hz, $J_{C-F} = 36.4$ Hz), 117.8 (t, $J_{C-F} = 4.3$ Hz), 114.8 (tq, $J_{C-F} = 252.5$ Hz, $J_{C-F} = 37.2$ Hz), 64.5, 34.6 (t, $J_{C-F} = 22.4$ Hz), 29.1, 28.0 ppm. ¹⁹F NMR (470 MHz, CDCl₃): E isomer: δ -85.79 (s, 3F), -118.23 (t, J = 17.4 Hz, 2F); Z isomer: δ -86.00 (s, 3F), -118.10 (t, J = 17.7 Hz, 2F). HRMS m/z (APCI): calcd. for C₁₅H₁₅ClF₅O₂ [M+H]⁺: 357.0675; found: 357.0674.

2f: (E)-7,7,8,8,8-pentafluorooct-4-en-1-yl 4-bromobenzoate. Prepared according to the general procedure. Reaction was run using **1f** (84.6 mg, 0.3 mmol), [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/Et₂O) and obtained a colorless oil (0.25 mmol, 100.8 mg, 84 %, E/Z = 92 : 8, allylic : vinylic = 24 : 1), R_f = 0.6 (hexane : Et₂O = 8 : 1). ¹H NMR (400 MHz, CDCl₃): δ 7.88 (d, J = 8.4 Hz, 2H), 7.56 (d, J = 8.4 Hz, 2H), 5.77-5.70 (m, 1H), 5.49-5.41 (m, 1H), 4.31 (t, J = 6.4 Hz, 2H), 2.74 (td, J = 17.6 Hz, J = 7.2 Hz, 2H), 2.22 (q, J = 7.1 Hz, 2H), 1.86 (m, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 165.9, 137.3, 131.8, 131.2, 129.3, 128.1,

119.2 (qt, $J_{C-F} = 286.1$ Hz, $J_{C-F} = 36.3$ Hz), 117.8 (t, $J_{C-F} = 4.2$ Hz), 114.8 (tq, $J_{C-F} = 252.4$ Hz, $J_{C-F} = 37.2$ Hz), 64.5, 34.6 (t, $J_{C-F} = 22.4$ Hz), 29.1, 28.0 ppm. ¹⁹F NMR (470 MHz, CDCl₃): *E* isomer: δ -85.78 (s, 3F), -118.23 (t, J = 17.7 Hz, 2F); *Z* isomer: δ -86.00 (s, 3F), -118.05 (t, J = 17.9 Hz, 2F). HRMS m/z (APCI): calcd. for C₁₅H₁₅BrF₅O₂ [M+H]⁺ : 401.0170; found: 401.0168.

2g: (E)-7,7,8,8,8-pentafluorooct-4-en-1-yl 4-iodobenzoate. Prepared according to the general procedure. Reaction was run using **1g** (99.0 mg, 0.3 mmol), [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/Et₂O) and obtained a colorless oil (0.22 mmol, 96.8 mg, 72 %, E/Z = 93 : 7, allylic : vinylic > 50 : 1, the product was contaminated by ~5% cross-coupled side product), R_f= 0.6 (hexane : Et₂O = 8 : 1). ¹H NMR (500 MHz, CDCl₃): δ 7.79 (d, J = 8.5 Hz, 2H), 7.73 (d, J = 8.5 Hz, 2H), 5.77-5.71 (m, 1H), 5.48-5.42 (m, 1H), 4.31 (t, J = 6.4 Hz, 2H), 2.74 (td, J = 17.5 Hz, J = 7.0 Hz, 2H), 2.22 (q, J = 7.0 Hz, 2H), 1.86 (m, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 166.2, 137.8, 137.3, 131.1, 129.9, 119.2 (qt, J_{C-F} = 286.3 Hz, J_{C-F} = 36.2 Hz), 117.8 (t, J_{C-F} = 4.2 Hz), 114.8 (tq, J_{C-F} = 252.3 Hz, J_{C-F} = 37.2 Hz), 100.8, 64.5, 34.6 (t, J_{C-F} = 22.6 Hz), 29.1, 28.0 ppm. ¹⁹F NMR (470 MHz, CDCl₃): E isomer: δ -85.78 (s, 3F), -118.25 (t, J = 17.7 Hz, 2F); Z isomer: δ -86.00 (s, 3F), -118.06 (t, J = 17.9 Hz, 2F). HRMS m/z (APCI): calcd. for C₁₅H₁₅IF₅O₂ [M+H]⁺: 449.0031; found: 449.0031.

2h: (E)-7,7,8,8,8-pentafluorooct-4-en-1-yl furan-2-carboxylate. Prepared according to the general procedure. Reaction was run using **1h** (58.2 mg, 0.3 mmol), [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/Et₂O) and obtained a colorless oil (0.20 mmol, 60.8 mg, 65 %, E/Z = 92 : 8, allylic : vinylic = 20 : 1), R_f = 0.6 (hexane : Et₂O = 8 : 1). ¹H NMR (400 MHz, CDCl₃): δ 7.56 (s, 1H), 7.15 (d, J = 3.6 Hz, 1H), 6.49 (dd, J = 1.6 Hz, 2H), 5.75-5.68 (m, 1H), 5.47-5.39 (m, 1H), 4.29 (t, J = 6.6 Hz, 2H), 2.72 (td, J = 17.2 Hz, J = 6.8 Hz, 2H), 2.20 (q, J = 7.1 Hz, 2H), 1.83 (m, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 158.8, 146.4, 144.8, 137.3, 119.2 (qt, $J_{C-F} = 286.1$ Hz, $J_{C-F} = 36.3$ Hz), 117.9, 117.8 (t, $J_{C-F} = 4.4$ Hz), 114.8 (tq, $J_{C-F} = 252.4$ Hz, $J_{C-F} = 37.3$ Hz), 111.9, 64.2, 34.6 (t, $J_{C-F} = 22.5$ Hz), 29.0, 28.0 ppm. ¹⁹F NMR (470 MHz, CDCl₃): *E* isomer: δ -85.78 (s, 3F), -118.23 (t, J = 17.7 Hz, 2F); *Z* isomer: δ -86.00 (s, 3F), -118.06 (t, J = 17.7 Hz, 2F). HRMS m/z (ESI): calcd. for C₁₃H₁₃F₅O₃Na [M+Na]⁺ : 335.0677; found: 335.0673.

2i: (E)-7,7,8,8,8-pentafluorooct-4-en-1-yl thiophene-2-carboxylate. Prepared according to the general procedure. Reaction was run using **1i** (63.0 mg, 0.3 mmol), [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/Et₂O) and obtained a colorless oil (0.21 mmol, 68.9 mg, 70 %, E/Z = 92 : 8, allylic : vinylic > 50 : 1), R_f = 0.6 (hexane : Et₂O = 8 : 1). ¹H NMR (400 MHz, CDCl₃): δ 7.80 (d, J = 3.6 Hz, 1H), 7.54 (d, J = 5.2 Hz, 1H), 7.09 (t, J

4.0 Hz, 1H), 5.77-5.70 (m, 1H), 5.49-5.42 (m, 1H), 4.30 (t, J = 6.4 Hz, 2H), 2.72 (td, J = 17.6 Hz, J = 7.2 Hz, 2H), 2.22 (q, J = 7.2 Hz, 2H), 1.84 (m, 2H) ppm. ¹³C **NMR** (101 MHz, CDCl₃): δ 162.3, 137.4, 134.0, 133.5, 132.4, 127.8, 119.3 (qt, $J_{C-F} = 286.5$ Hz, $J_{C-F} = 36.4$ Hz), 117.8 (t, $J_{C-F} = 4.4$ Hz), 114.8 (tq, $J_{C-F} = 252.4$ Hz, $J_{C-F} = 37.3$ Hz), 64.4, 34.6 (t, $J_{C-F} = 22.5$ Hz), 29.1, 28.1 ppm. ¹⁹F **NMR** (470 MHz, CDCl₃): *E* isomer: δ -85.78 (s, 3F), -118.23 (t, J = 17.7 Hz, 2F); *Z* isomer: δ -85.96 (s, 3F), -118.02 (t, J = 17.9 Hz, 2F). **HRMS** m/z (ESI): calcd. for C₁₃H₁₃F₅O₂SNa [M+Na]⁺ : 351.0449; found: 351.0445.

2j: (E)-7,7,8,8,8-pentafluorooct-4-en-1-yl picolinate. Prepared according to the general procedure. Reaction was run using 1j (61.5 mg, 0.3 mmol), [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/EtOAc) and obtained a colorless oil (0.23 mmol, 72.7 mg, 75 %, E/Z = 97 : 3, allylic : vinylic = 9 : 1), R_f = 0.4 (hexane : EtOAc = 2 : 1). ¹H NMR (400 MHz, CDCl₃): δ 8.73 (d, J = 4.0 Hz, 1H), 8.09 (d, J = 8.0 Hz, 1H), 7.81 (t, J = 7.6 Hz, 1H), 7.45 (m, 1H), 5.75-5.68 (m, 1H), 5.46-5.38 (m, 1H), 4.39 (t, J = 6.8 Hz, 2H), 2.71 (td, J = 17.6 Hz, J = 7.2 Hz, 2H), 2.21 (q, J = 7.2 Hz, 2H), 1.90 (m, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 165.3, 150.0, 148.2, 137.3, 137.1, 127.0, 125.2, 119.2 (qt, $J_{C-F} = 286.1$ Hz, $J_{C-F} = 36.4$ Hz), 117.7 (t, $J_{C-F} = 4.3$ Hz), 114.8 (tq, $J_{C-F} = 252.4$ Hz, $J_{C-F} = 37.2$ Hz), 65.2, 34.6 (t, $J_{C-F} = 22.4$ Hz), 29.0, 28.0 ppm. ¹⁹F NMR (470 MHz, CDCl₃): E isomer: δ -85.79 (s, 3F), -118.25 (t, J = 17.7 Hz, 2F); Z isomer: δ -86.01 (s, 3F), -118.07 (t, J = 17.4 Hz, 2F); vinyl isomer: -86.39 (s, 3F), -116.14 (d, J = 11.7 Hz, 2F). HRMS m/z (ESI): calcd. for C₁₄H₁₅F₅NO₂ [M+H]⁺ : 324.1018; found: 324.1012.

2k: (E)-1-iodo-4-((7,7,8,8,8-pentafluorooct-4-en-1-yl)oxy)benzene. Prepared according to the general procedure. Reaction was run using 1k (90.6 mg, 0.3 mmol), [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/Et₂O) and obtained a colorless oil (0.24 mmol, 102.1 mg, 81 %, E/Z = 91 : 9, allylic : vinylic = 20 : 1), R_f = 0.9 (hexane : Et₂O = 10 : 1). ¹H NMR (400 MHz, CDCl₃): δ 7.55 (d, J = 8.0 Hz, 2H), 6.67 (d, J = 8.0 Hz, 2H), 5.79-5.72 (m, 1H), 5.49-5.42 (m, 1H), 3.92 (t, J = 6.4 Hz, 2H), 2.76 (td, J = 17.6 Hz, J = 7.2 Hz, 2H), 2.26 (q, J = 7.1 Hz, 2H), 1.88 (m, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 159.0, 138.3, 137.7, 119.3 (qt, $J_{C-F} = 286.6$ Hz, $J_{C-F} = 36.3$ Hz), 117.7 (t, $J_{C-F} = 4.4$ Hz), 117.0, 114.9 (tq, $J_{C-F} = 252.8$ Hz, $J_{C-F} = 37.2$ Hz), 82.7, 67.1, 34.7 (t, $J_{C-F} = 22.5$ Hz), 29.0, 28.5 ppm. ¹⁹F NMR (470 MHz, CDCl₃): E isomer: δ -85.76 (s, 3F), -118.22 (t, J = 17.7 Hz, 2F); Z isomer: δ -85.97 (s, 3F), -118.03 (t, J = 17.9 Hz, 2F). HRMS m/z (ESI): calcd. for C₁₄H₁₄F₅IO [M]⁺ : 420.0004; found: 420.0000.

21: (E)-1-(4-((7,7,8,8,8-pentafluorooct-4-en-1-yl)oxy)phenyl)ethan-1-one. Prepared according to the general procedure. Reaction was run using **11** (65.4 mg, 0.3 mmol), [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/Et₂O) and obtained a yellow oil (0.26 mmol, 85.7 mg, 85 %, E/Z = 92 : 8, allylic : vinylic > 50 : 1), R_f= 0.6 (hexane :

Et₂O = 2 : 1). ¹**H** NMR (400 MHz, CDCl₃): δ 7.89 (d, J = 8.8 Hz, 2H), 6.88 (d, J = 8.8 Hz, 2H), 5.77-5.69 (m, 1H), 5.46-5.39 (m, 1H), 3.99 (t, J = 6.4 Hz, 2H), 2.73 (td, J = 17.6 Hz, J = 7.2 Hz, 2H), 2.51 (s, 3H), 2.25 (q, J = 7.1 Hz, 2H), 1.88 (m, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 196.8, 163.0, 137.5, 130.6, 130.3, 119.2 (qt, J_{C-F} = 286.3 Hz, J_{C-F} = 36.2 Hz), 117.7 (t, J_{C-F} = 4.1 Hz), 114.8 (tq, J_{C-F} = 252.4 Hz, J_{C-F} = 37.3 Hz), 114.1, 67.2, 34.5 (t, J_{C-F} = 22.4 Hz), 28.9, 28.3, 26.3 ppm. ¹⁹F NMR (470 MHz, CDCl₃): *E* isomer: δ -85.76 (s, 3F), -118.19 (t, J = 17.4 Hz, 2F); *Z* isomer: δ -85.98 (s, 3F), -118.02 (t, J = 17.9 Hz, 2F). HRMS m/z (ESI): calcd. for C₁₆H₁₇F₅O₂Na [M+Na]⁺ : 359.1041; found: 359.1039.

2m: (E)-4-((7,7,8,8,8-pentafluorooct-4-en-1-yl)oxy)benzaldehyde. Prepared according to the general procedure. Reaction was run using 1m (61.2 mg, 0.3 mmol), [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/Et₂O) and obtained a yellow oil (0.25 mmol, 81.1 mg, 84 %, E/Z = 93 : 7, allylic : vinylic > 50 : 1), R_f= 0.6 (hexane : Et₂O = 2 : 1). ¹H NMR (400 MHz, CDCl₃): δ 9.85 (s, 1H), 7.80 (d, J = 8.4 Hz, 2H), 6.96 (d, J = 8.4 Hz, 2H), 5.77-5.70 (m, 1H), 5.47-5.40 (m, 1H), 4.02 (t, J = 6.2 Hz, 2H), 2.74 (td, J = 17.2 Hz, J = 7.2 Hz, 2H), 2.26 (q, J = 7.1 Hz, 2H), 1.89 (m, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 190.9, 164.1, 137.4, 132.0, 130.0, 119.2 (qt, $J_{C-F} = 286.3$ Hz, $J_{C-F} = 36.4$ Hz), 117.8 (t, $J_{C-F} = 4.3$ Hz), 114.8 (tq, $J_{C-F} = 252.3$ Hz, $J_{C-F} = 37.2$ Hz), 114.8, 67.3, 34.6 (t, $J_{C-F} = 22.4$ Hz), 28.9, 28.3 ppm. ¹⁹F NMR (470 MHz, CDCl₃): *E* isomer: δ -85.77 (s, 3F), -118.21 (t, J = 17.4 Hz, 2F); *Z* isomer: δ -86.00 (s, 3F), -118.04 (t, J = 17.9 Hz, 2F). HRMS m/z (ESI): calcd. for C₁₅H₁₆F₅O₂ [M+H]⁺: 323.1065; found: 323.1061.

2n: (E)-(((7,7,8,8,8-pentafluorooct-4-en-1-yl)oxy)methyl)benzene. Prepared according to the general procedure. Reaction was run using 1n (57.0 mg, 0.3 mmol), [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/Et₂O) and obtained a colorless oil (0.25 mmol, 76.7 mg, 83 %, E/Z = 91 : 9, allylic : vinylic = 31 : 1), R_f = 0.7 (hexane : Et₂O = 10 : 1). ¹H NMR (400 MHz, CDCl₃): δ 7.38-7.34 (m, 4H), 7.33-7.28 (m, 1H), 5.76-5.69 (m, 1H), 5.46-5.38 (m, 1H), 4.52 (s, 2H), 3.50 (t, J = 6.4 Hz, 2H), 2.75 (td, J = 17.6 Hz, J = 7.2 Hz, 2H), 2.20 (q, J = 7.2 Hz, 2H), 1.74 (m, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 138.7, 138.2, 128.5, 127.8, 127.7, 119.3 (qt, $J_{C-F} = 286.7$ Hz, $J_{C-F} = 36.4$ Hz), 117.1 (t, $J_{C-F} = 4.4$ Hz), 114.9 (tq, $J_{C-F} = 252.8$ Hz, $J_{C-F} = 37.2$ Hz), 73.1, 69.5, 34.7 (t, $J_{C-F} = 22.5$ Hz), 29.3, 29.1 ppm. ¹⁹F NMR (470 MHz, CDCl₃): E isomer: δ -85.77 (s, 3F), -118.24 (t, J = 17.6 Hz, 2F); Z isomer: δ -85.96 (s, 3F), -118.04 (t, J = 17.9 Hz, 2F). HRMS m/z (APCI): calcd. for C₁₅H₁₇F₅ONa [M+Na]⁺: 331.1091; found: 331.1089.

20: (E)-7,7,8,8,8-pentafluorooct-4-en-1-yl 4-methylbenzenesulfonate. Prepared according to the general procedure. Reaction was run using 10 (76.2 mg, 0.3 mmol), [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/Et₂O) and obtained a yellow oil (0.17 mmol, 62.5 mg, 56 %, E/Z = 92 : 8, allylic : vinylic > 50 : 1), R_f = 0.5 (hexane :

Et₂O = 2 : 1). ¹**H** NMR (400 MHz, CDCl₃): δ 7.77 (d, J = 8.0 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 5.61-5.53 (m, 1H), 5.34-5.27 (m, 1H), 4.00 (t, J = 6.4 Hz, 2H), 2.67 (td, J = 17.6 Hz, J = 7.2 Hz, 2H), 2.43 (s, 3H), 2.10 (q, J = 7.2 Hz, 2H), 1.72 (m, 2H) ppm. ¹³**C** NMR (101 MHz, CDCl₃): δ 145.0, 136.6, 133.1, 129.9, 128.0, 119.2 (qt, J_{C-F} = 286.7 Hz, J_{C-F} = 36.3 Hz), 118.2 (t, J_{C-F} = 4.4 Hz), 114.7 (tq, J_{C-F} = 252.8 Hz, J_{C-F} = 37.1 Hz), 67.6, 34.5 (t, J_{C-F} = 22.5 Hz), 28.3, 28.1, 21.6 ppm. ¹⁹**F** NMR (470 MHz, CDCl₃): *E* isomer: δ -85.82 (s, 3F), -118.28 (t, J = 17.6 Hz, 2F); *Z* isomer: δ -85.93 (s, 3F), -118.00 (t, J = 17.6 Hz, 2F). HRMS m/z (ESI): calcd. for C₁₅H₁₇F₅O₃SNa [M+Na]⁺ : 395.0711; found: 395.0706.

X
$$CF_2CF_3$$

2p (X = Br) : **2p**" (X = Cl) = 5 : 3

2p/2p": (E)-7,7,8,8,8-pentafluorooct-4-en-1-yl 6-bromo/-Chlorohexanoate. Prepared according to the general procedure. Reaction was run using **1p** (82.8 mg, 0.3 mmol), [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/Et₂O) and obtained an inseparable mixture of **2p** and **2p**" as a colorless oil (**2p** : **2p**" = 5 : 3, total 0.20 mmol, 77.0 mg, 68 %, *E/Z* of **2p** = 93 : 7, *E/Z* of **2p**" = 93 : 7, allylic : vinylic > 50 : 1), $R_f = 0.5$ (hexane : Et₂O = 5 : 1).

2p: ¹**H NMR** (400 MHz, CDCl₃): δ 5.72-5.65 (m, 1H), 5.44-5.37 (m, 1H), 4.05 (t, J = 6.6 Hz, 2H), 3.38 (t, J = 6.8 Hz, 2H), 2.72 (td, J = 17.6 Hz, J = 7.2 Hz, 2H), 2.30 (t, J = 7.4 Hz, 2H), 2.12 (q, J = 7.2 Hz, 2H), 1.85 (m, 2H), 1.71 (m, 2H), 1.63 (m, 2H), 1.46 (m, 2H) ppm. ¹³C **NMR** (126 MHz, CDCl₃): δ 173.5, 137.4, 119.2 (qt, $J_{C-F} = 286.1$ Hz, $J_{C-F} = 36.4$ Hz), 117.6 (t, $J_{C-F} = 4.3$ Hz), 114.8 (tq, $J_{C-F} = 252.3$ Hz, $J_{C-F} = 37.2$ Hz), 63.6, 34.6 (t, $J_{C-F} = 22.5$ Hz), 34.1, 33.5, 32.5, 29.0, 28.0, 27.7, 24.2 ppm. ¹⁹F **NMR** (470 MHz, CDCl₃): *E* isomer: δ -85.78 (s, 3F), -118.25 (t, J = 17.6 Hz, 2F); *Z* isomer: δ -85.96 (s, 3F), -118.03 (t, J = 17.9 Hz, 2F). **HRMS** m/z (ESI): calcd. for C₁₄H₂₀BrF₅O₂Na [M+Na]⁺ : 417.0459; found: 417.0454.

2p": ¹**H NMR** (400 MHz, CDCl₃): δ 5.72-5.65 (m, 1H), 5.44-5.37 (m, 1H), 4.05 (t, J = 6.6 Hz, 2H), 3.51 (t, J = 6.6 Hz, 2H), 2.72 (td, J = 17.6 Hz, J = 7.2 Hz, 2H), 2.30 (t, J = 7.4 Hz, 2H), 2.12 (q, J = 7.2 Hz, 2H), 1.77 (m, 2H), 1.71 (m, 2H), 1.63 (m, 2H), 1.45 (m, 2H) ppm. ¹³C **NMR** (126 MHz, CDCl₃): δ 173.5, 137.4, 119.2 (qt, $J_{C-F} = 286.1$ Hz, $J_{C-F} = 36.4$ Hz), 117.6 (t, $J_{C-F} = 4.3$ Hz), 114.8 (tq, $J_{C-F} = 252.3$ Hz, $J_{C-F} = 37.2$ Hz), 63.6, 44.8, 34.6 (t, $J_{C-F} = 22.5$ Hz), 34.1, 32.3, 29.0, 28.0, 26.5, 24.3 ppm. ¹⁹F **NMR** (470 MHz, CDCl₃): *E* isomer: δ -85.78 (s, 3F), -118.25 (t, J = 17.6 Hz, 2F); *Z* isomer: δ -85.96 (s, 3F), -118.03 (t, J = 17.9 Hz, 2F). **HRMS** m/z (ESI): calcd. for C₁₄H₂₀ClF₅O₂Na [M+Na]⁺ : 373.0964; found: 373.0960.

2q: methyl (E)-12,12,13,13,13-pentafluorotridec-9-enoate. Prepared according to the general procedure. Reaction was run using 1q (59.4 mg, 0.3 mmol), [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/Et₂O) and obtained a colorless oil (0.24 mmol, 76.8 mg, 81 %, E/Z = 94 : 6, allylic : vinylic = 33 : 1), R_f = 0.7 (hexane : Et₂O = 5 : 1). ¹H NMR (400 MHz, CDCl₃): δ 5.70-5.62 (m, 1H), 5.38-5.30 (m, 1H), 3.63 (s, 3H), 2.70 (td, J = 17.6 Hz, J = 7.2 Hz, 2H), 2.27 (t, J = 7.6 Hz, 2H), 2.02 (q, J = 6.8 Hz, 2H), 1.59 (m, 2H), 1.34 (m, 2H), 1.31-1.23 (m, 6H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 174.4, 138.9, 119.3 (qt, $J_{C-F} = 286.7$ Hz, $J_{C-F} = 36.5$ Hz), 116.5 (t, $J_{C-F} = 4.3$ Hz), 114.9 (tq, $J_{C-F} = 252.6$ Hz, $J_{C-F} = 37.1$ Hz), 51.4, 34.7 (t, $J_{C-F} = 22.5$ Hz), 34.1, 32.6, 29.2, 29.1, 28.9, 25.0 ppm (one carbon missing due to overlap). ¹⁹F NMR (470 MHz,

CDCl₃): *E* isomer: δ -85.76 (s, 3F), -118.26 (t, *J* = 17.6 Hz, 2F); *Z* isomer: δ -85.94 (s, 3F), -118.00 (t, *J* = 17.6 Hz, 2F). **HRMS** m/z (ESI): calcd. for C₁₄H₂₁F₅O₂Na [M+Na]⁺ : 339.1354; found: 339.1351.

2r: (E)-12,12,13,13,13-pentafluoro-1-morpholinotridec-9-en-1-one. Prepared according to the general procedure. Reaction was run using 1r (75.9 mg, 0.3 mmol), [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/Et₂O) and obtained a yellow oil (0.25 mmol, 91.3 mg, 82 %, E/Z = 93 : 7, allylic : vinylic = 28 : 1), R_f= 0.3 (hexane : EtOAc = 3 : 2). ¹H NMR (400 MHz, CDCl₃): δ 5.68-5.61 (m, 1H), 5.36-5.26 (m, 1H), 3.62 (t, J = 4.8 Hz, 4H), 3.57 (t, J = 4.4 Hz, 2H), 3.42 (t, J = 4.4 Hz, 2H), 2.69 (td, J = 17.6 Hz, J = 7.2 Hz, 2H), 2.26 (t, J = 7.6 Hz, 2H), 2.01 (q, J = 6.8 Hz, 2H), 1.58 (m, 2H), 1.33(m, 2H), 1.29-1.22 (m, 6H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 171.9, 138.9, 119.2 (qt, $J_{C-F} = 286.3$ Hz, $J_{C-F} = 36.4$ Hz), 116.4 (t, $J_{C-F} = 4.2$ Hz), 114.9 (tq, $J_{C-F} = 252.1$ Hz, $J_{C-F} = 37.0$ Hz), 67.0, 66.7, 46.1, 41.9, 34.6 (t, $J_{C-F} = 22.4$ Hz), 33.1, 32.5, 29.4, 29.2, 28.9, 28.8, 25.2 ppm. ¹⁹F NMR (470 MHz, CDCl₃): E isomer: δ -85.77 (s, 3F), -118.22 (t, J = 17.6 Hz, 2F); Z isomer: δ -85.95 (s, 3F), -118.02 (t, J = 17.9 Hz, 2F). HRMS m/z (ESI): calcd. for C₁₇H₂₇F₅NO₂ [M+H]⁺ : 372.1957; found: 372.1953.

CF₂CF₃

2s: (E)-2-(9,9,10,10,10-pentafluorodec-6-en-1-yl)oxirane. Prepared according to the general procedure. Reaction was run using 1s (46.2 mg, 0.3 mmol), [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/Et₂O) and obtained a colorless oil (0.22 mmol, 60.4 mg, 74 %, E/Z = 92 : 8, allylic : vinylic = 45 : 1), R_f = 0.7 (hexane : Et₂O = 5 : 2). ¹H NMR (400 MHz, CDCl₃): δ 5.71-5.64 (m, 1H), 5.39-5.32 (m, 1H), 2.90-2.85 (m, 1H), 2.71 (td, J = 17.8 Hz, J = 6.8 Hz, 2H), 2.74-2.69 (m, 1H), 2.43 (dd, J = 4.8 Hz, J = 2.8 Hz, 1H), 2.05 (q, J = 6.7 Hz, 2H), 1.54-1.30 (m, 8H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 138.8, 119.3 (qt, $J_{C-F} = 286.6$ Hz, $J_{C-F} = 36.4$ Hz), 116.7 (t, $J_{C-F} = 4.3$ Hz), 114.9 (tq, $J_{C-F} = 252.6$ Hz, $J_{C-F} = 37.2$ Hz), 52.4, 47.1, 34.7 (t, $J_{C-F} = 22.5$ Hz), 32.5, 32.5, 28.9, 25.9 ppm (one carbon missing due to overlap). ¹⁹F NMR (470 MHz, CDCl₃): E isomer: δ -85.76 (s, 3F), -118.26 (t, J = 17.6 Hz, 2F); *Z* isomer: δ -85.94 (s, 3F), -118.00 (t, J = 17.6 Hz, 2F). HRMS m/z (APCI): calcd. for C₁₂H₁₈F₅O [M+H]⁺ : 273.1272; found: 273.1271.

HO_____CF2CF3

2t: (E)-12,12,13,13,13-pentafluorotridec-9-en-1-ol. Prepared according to the general procedure. Reaction was run using 1t (51.0 mg, 0.3 mmol), [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/Et₂O) and obtained a colorless oil (0.24 mmol, 70.0 mg, 81 %, E/Z = 92 : 8, allylic : vinylic = 48 : 1), R_f = 0.3 (hexane : EtOAc = 3 : 1). ¹H NMR (400 MHz, CDCl₃): δ 5.71-5.64 (m, 1H), 5.38-5.31 (m, 1H), 3.60 (t, J = 6.6 Hz, 2H), 2.71 (td, J = 17.6 Hz, J = 7.2 Hz, 2H), 2.04 (s, 1H), 2.03 (q, J = 6.8 Hz, 2H), 1.53 (m, 2H), 1.34 (m, 2H), 1.32-1.22 (m, 8H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 139.0, 119.3 (qt, $J_{C-F} = 286.1$ Hz, $J_{C-F} = 36.4$ Hz), 116.5 (t, $J_{C-F} = 4.3$ Hz), 114.9 (tq, $J_{C-F} = 252.6$ Hz, $J_{C-F} = 37.0$ Hz), 63.0, 34.7 (t, $J_{C-F} = 22.4$ Hz), 32.8, 32.6, 29.5, 29.1, 29.0, 25.8 ppm. ¹⁹F NMR (470 MHz, CDCl₃): E isomer: δ -85.76 (s, 3F), -118.26 (t, J = 17.4 Hz, 2F); Z isomer: δ -85.95 (s, 3F), -117.99 (t, J = 17.6 Hz, 2F). HRMS m/z (APCI): calcd. for

 $C_{13}H_{22}F_5O [M+H]^+$: 289.1585; found: 289.1583.

2u: (E)-12,12,13,13,13-pentafluorotridec-9-enoic acid. Prepared according to the general procedure. Reaction was run using 1u (55.2 mg, 0.3 mmol), [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/Et₂O) and obtained a yelow oil (0.24 mmol, 72.5 mg, 80 %, E/Z = 97 : 3, allylic : vinyl = 13 : 1), R_f = 0.2 (hexane : EtOAc = 2 : 1). ¹H NMR (400 MHz, CDCl₃): δ 10.56 (s, 1H), 5.73-5.65 (m, 1H), 5.40-5.33 (m, 1H), 2.73 (td, J = 17.6 Hz, J = 7.2 Hz, 2H), 2.34 (t, J = 7.4 Hz, 2H), 2.05 (q, J = 6.9 Hz, 2H), 1.63 (m, 2H), 1.35 (m, 2H), 1.33-1.24 (m, 6H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 180.7, 139.0, 119.3 (qt, $J_{C-F} = 286.1$ Hz, $J_{C-F} = 36.4$ Hz), 116.6 (t, $J_{C-F} = 4.3$ Hz), 115.0 (tq, $J_{C-F} = 252.3$ Hz, $J_{C-F} = 37.0$ Hz), 34.7 (t, $J_{C-F} = 22.4$ Hz), 34.2, 32.6, 29.2, 29.2, 28.9, 28.9, 24.8 ppm. ¹⁹F NMR (470 MHz, CDCl₃): E isomer: δ -85.77 (s, 3F), -118.03 (t, J = 17.9 Hz, 2F). HRMS m/z (APCI): calcd. for C₁₃H₁₈F₅O₂ [M-H]⁻: 301.1232; found: 301.1232.

2v: (E)-1-methoxy-4-(4,4,5,5,5-pentafluoropent-1-en-1-yl)benzene. Prepared according to the general procedure. Reaction was run using 1v (44.4 mg, 0.3 mmol), [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/Et₂O) and obtained a colorless oil (0.17 mmol, 44.7 mg, 56 %, E/Z = 98 : 2, allylic : vinylic > 50 : 1), R_f = 0.5 (hexane : Et₂O = 10 : 1). ¹H NMR (500 MHz, CDCl₃): δ 7.34 (d, J = 8.5 Hz, 2H), 6.88 (d, J = 8.4 Hz, 2H), 6.56 (d, J = 16.0 Hz, 1H), 6.02-5.96 (m, 1H), 3.82 (s, 3H), 2.95 (td, J = 17.5 Hz, J = 7.5 Hz, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 159.7, 136.6, 129.2, 127.8, 119.3 (qt, $J_{C-F} = 286.1$ Hz, $J_{C-F} = 36.2$ Hz), 114.9 (tq, $J_{C-F} = 252.4$ Hz, $J_{C-F} = 37.2$ Hz), 114.2, 113.9 (t, $J_{C-F} = 4.4$ Hz), 55.4, 35.0 (t, $J_{C-F} = 22.5$ Hz) ppm. ¹⁹F NMR (470 MHz, CDCl₃): E isomer: δ -85.75 (s, 3F), -117.96 (t, J = 17.4 Hz, 2F). HRMS m/z (APCI): calcd. for C₁₂H₁₂F₅O [M+H]⁺ : 267.0802; found: 267.0806.

2w: (E)-5,5,6,6,6-pentafluorohex-2-en-1-yl benzoate. Prepared according to the general procedure. Reaction was run using **1w** (52.8 mg, 0.3 mmol), [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/Et₂O) and obtained a colorless oil (0.18 mmol, 52.9 mg, 60 %, E/Z = 98 : 2, allylic : vinylic = 7 : 1 by crude ¹H NMR, vinylic isomer was separated by column chromatography), R_f = 0.7 (hexane : Et₂O = 5 : 1). ¹H NMR (400 MHz, CDCl₃): δ 8.06 (d, J = 7.2 Hz, 2H), 7.57 (t, J = 7.4 Hz, 1H), 7.45 (t, J = 7.4 Hz, 2H), 6.01-5.95 (m, 1H), 5.86-5.79 (m, 1H), 4.84 (d, J = 6.0 Hz, 2H), 2.85 (td, J = 17.6 Hz, J = 6.8 Hz, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 166.3, 133.2, 132.2, 130.1, 129.8, 128.5, 121.4 (t, $J_{C-F} = 4.4$ Hz), 119.2 (qt, $J_{C-F} = 286.6$ Hz, $J_{C-F} = 36.1$ Hz), 114.7 (tq, $J_{C-F} = 253.6$ Hz, $J_{C-F} = 37.7$ Hz), 64.4, 34.4 (t, $J_{C-F} = 22.6$ Hz) ppm. ¹⁹F NMR (376 MHz, CDCl₃): E isomer: δ -85.87 (s, 3F), -118.05 (t, J = 17.3 Hz, 2F). HRMS m/z (ESI): calcd. for C₁₃H₁₁F₅O₂Na [M+Na]⁺ : 317.0571; found: 317.0570.

2x: (8R,9S,13S,14S)-13-methyl-3-(((E)-6-((1,2,2,2-tetrafluoro-215-vinyl)-l2-fluoranyl)hex-4-en-1yl)oxy)-6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17-one. Prepared according to the general procedure. Reaction was run using 1x (105.6 mg, 0.3 mmol), [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/Et₂O) and obtained a white solid, melting point: 98.7–99.4 °C (0.28 mmol, 131.1 mg, 93 %, E/Z = 95 : 5, allylic : vinylic = 30 : 1), $R_f = 0.4$ (hexane : $Et_2O = 3 : 1$). ¹H NMR (400 MHz, CDCl₃): δ 7.22 (d, J = 8.8 Hz, 1H), 6.74 (dd, J = 8.4 Hz, J = 2.4 Hz, 1H), 6.67 (d, J = 2.4 Hz, 1H), 5.83-5.76 (m, 1H5.52-5.46 (m, 1H), 3.96 (d, J = 6.4 Hz, 2H), 2.97-2.87 (m, 2H), 2.79 (td, J = 17.6 Hz, J = 6.8 Hz, 2H), 2.79 (dd, J = 18.8 Hz, J = 8.8 Hz, 2H), 2.45-2.39 (m, 1H), 2.29 (q, J = 7.2 Hz, 2H), 2.22-1.95 (m, 4H), 1.89 (m, 2H), 1.70-1.42 (m, 6H), 0.94 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 220.8, 157.0, 137.8, 137.7, 132.0, 126.3, 119.2 (qt, $J_{C-F} = 286.3$ Hz, $J_{C-F} = 36.4$ Hz), 117.3 (t, $J_{C-F} = 4.3$ Hz), 114.8 (tq, $J_{C-F} = 4.3$ Hz) 253.6 Hz, *J*_{CF} = 37.2 Hz), 114.5, 112.1, 66.8, 50.4, 48.0, 44.0, 38.4, 35.8, 34.5 (t, *J*_{CF} = 22.4 Hz), 31.6, 29.7, 29.0, 28.6, 26.6, 25.9, 21.6, 13.8 ppm. ¹⁹F NMR (470 MHz, CDCl₃): E isomer: δ -85.76 (s, 3F), -118.21 (t, J = 17.6 Hz, 2F); Z isomer: δ -85.97 (s, 3F), -118.01 (t, J = 17.9 Hz, 2F). **HRMS** m/z (ESI): calcd. for C₂₆H₃₁F₅O₂ [M]⁺: 470.2239; found: 470.2231.

2y: (E)-4-methyl-7-((7,7,8,8,8-pentafluorooct-4-en-1-yl)oxy)-2H-chromen-2-one. Prepared according to the general procedure. Reaction was run using **1y** (77.4 mg, 0.3 mmol), [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/Et₂O) and obtained a yellow solid, melting point: 46.1–46.5 °C (0.22 mmol, 81.2 mg, 72 %, *E/Z* = 96 : 4, allylic : vinylic > 50 : 1), R_f= 0.3 (hexane : Et₂O = 2 : 1). ¹**H NMR** (400 MHz, CDCl₃): δ 7.44 (d, *J* = 8.8 Hz, 1H), 6.80 (dd, *J* = 8.8 Hz, *J* = 2.0 Hz, 1H), 6.72 (t, *J* = 2.0 Hz, 1H), 6.06 (s, 1H), 5.76-5.69 (m, 1H), 5.46-5.38 (m, 1H), 3.97 (t, *J* = 6.4 Hz, 2H), 2.73 (td, *J* = 17.6 Hz, *J* = 6.8 Hz, 2H), 2.34 (s, 3H), 2.25 (q, *J* = 7.1 Hz, 2H), 1.88 (m, 2H) ppm. ¹³**C NMR** (101 MHz, CDCl₃): δ 162.1, 161.3, 155.3, 152.7, 137.4, 125.6, 119.2 (qt, *J*_{C-F} = 286.7 Hz, *J*_{C-F} = 36.4 Hz), 117.7 (t, *J*_{C-F} = 4.4 Hz), 114.8 (tq, *J*_{C-F} = 252.7 Hz, *J*_{C-F} = 37.2 Hz), 113.5, 112.5, 111.8, 101.4, 67.5, 34.5 (t, *J*_{C-F} = 22.5 Hz), 28.9, 28.2, 18.6 ppm. ¹⁹**F NMR** (376 MHz, CDCl₃): *E* isomer: δ -85.76 (s, 3F), -118.22 (t, *J* = 17.5 Hz, 2F); *Z* isomer: δ -85.97 (s, 3F), -118.04 (t, *J* = 17.7 Hz, 2F). **HRMS** m/z (ESI): calcd. for C₁₈H₁₇F₅O₃Na [M+Na]⁺ : 399.0990; found: 399.0988.

2z: (E)-3-((7,7,8,8,8-pentafluorooct-4-en-1-yl)oxy)-2-phenyl-4H-chromen-4-one. Prepared according to the general procedure. Reaction was run using 1z (96.0 mg, 0.3 mmol), [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/Et₂O) and obtained a yellow oil (0.25 mmol, 110.4 mg, 84 %, E/Z = 95 : 5, allylic : vinylic =

23 : 1), $R_f = 0.6$ (hexane : $Et_2O = 3 : 1$). ¹**H** NMR (400 MHz, CDCl₃): δ 8.23 (d, J = 8.0 Hz, 2H), 8.08-8.03 (m, 2H), 7.62 (t, J = 8.5 Hz, 1H), 7.52-7.47 (m, 3H), 7.38-7.33 (m, 1H), 5.67-5.59 (m, 1H), 5.29-5.22 (m, 1H), 4.03 (t, J = 6.4 Hz, 2H), 2.67 (td, J = 17.6 Hz, J = 6.8 Hz, 2H), 2.13 (q, J = 7.1 Hz, 2H), 1.77 (m, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 175.1, 156.0, 155.3, 140.5, 137.8, 133.4, 131.0, 130.7, 128.7, 128.4, 125.7, 124.7, 124.2, 119.2 (qt, $J_{C-F} = 286.8$ Hz, $J_{C-F} = 36.3$ Hz), 118.0, 117.1 (t, $J_{C-F} = 4.3$ Hz), 114.8 (tq, $J_{C-F} = 252.7$ Hz, $J_{C-F} = 37.1$ Hz), 71.8, 34.5 (t, $J_{C-F} = 22.4$ Hz), 29.3, 28.9 ppm. ¹⁹F NMR (470 MHz, CDCl₃): *E* isomer: δ -85.79 (s, 3F), -118.21 (t, J = 17.6 Hz, 2F); *Z* isomer: δ -85.87 (s, 3F), -117.89 (t, J = 17.9 Hz, 2F). HRMS m/z (ESI): calcd. for C₂₃H₂₀F₅O₃ [M+H]⁺ : 439.1327; found: 439.1323.

2aa: naphthalen-2-yl 4,4,5,5,5-pentafluoropentanoate. Prepared according to the general procedure. Reaction was run using **1aa** (59.4 mg, 0.3 mmol), [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/Et₂O) and obtained a colorless oil (0.06 mmol, 20.0 mg, 21 %), R_f = 0.7 (hexane : Et₂O = 5 : 1). ¹H NMR (100 MHz, CDCl₃): δ 7.89-7.81 (m, 3H), 7.58 (d, *J* = 2.0 Hz, 1H), 7.54-7.46 (m, 2H), 7.23 (dd, *J* = 8.8 Hz, *J* = 2.0 Hz, 1H), 2.96 (t, *J* = 7.8 Hz, 2H), 2.65-2.52 (m, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 170.0, 148.1, 133.8, 132.7, 129.7, 127.9, 127.8, 126.9, 126.1, 120.8, 119.1 (qt, *J*_{C-F} = 285.6 Hz, *J*_{C-F} = 35.9 Hz), 118.6, 115.3 (tq, *J*_{C-F} = 252.8 Hz, *J*_{C-F} = 38.2 Hz), 26.4 (t, *J*_{C-F} = 22.1 Hz), 26.1 (t, *J*_{C-F} = 3.8 Hz) ppm. ¹⁹F NMR (470 MHz, CDCl₃): δ -86.39 (s, 3F), -119.57 (t, *J* = 18.1 Hz, 2F). HRMS m/z (ESI): calcd. for C₁₅H₁₁F₅O₂Na [M+Na]⁺ : 341.0571; found: 341.0570.

2ab: (4-(2,2,3,3,3-pentafluoropropylidene)cyclohexyl)benzene. Prepared according to the general procedure. Reaction was run using **1ab** (51.6 mg, 0.3 mmol), [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane) and obtained a colorless oil (0.03 mmol, 8.7 mg, 10 %), R_f = 0.5 (hexane). ¹H NMR (500 MHz, CDCl₃): δ 7.31 (t, *J* = 7.5 Hz, 2H), 7.25-7.21 (m, 3H), 5.77 (s, 1H), 2.81-2.68 (m, 3H), 2.38-2.27 (m, 2H), 2.23-2.15 (m, 2H), 1.98 (dd, *J* = 12.0 Hz, *J* = 2.0 Hz, 1H), 1.79 (qd, *J* = 12.0 Hz, *J* = 5.5 Hz, 1H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 146.7, 129.7, 128.6, 127.0, 126.3, 119.3 (qt, *J*_{C-F} = 286.4 Hz, *J*_{C-F} = 36.2 Hz), 115.4 (tq, *J*_{C-F} = 252.5 Hz, *J*_{C-F} = 36.9 Hz), 39.5, 38.9 (t, *J*_{C-F} = 21.7 Hz), 33.8, 30.0, 30.0 ppm. (one carbon missing due to overlap) ¹⁹F NMR (470 MHz, CDCl₃): δ -86.05 (s, 3F), -116.98 (m, 2F). HRMS m/z (APCI): calcd. for C₁₅H₁₆F₅ [M+H]⁺ : 291.1167; found: 291.1167.

CI CF2CF3

2ab": (4-chloro-4-(2,2,3,3,3-pentafluoropropyl)cyclohexyl)benzene. Prepared according to the general procedure. Reaction was run using **1ab** (51.6 mg, 0.3 mmol), [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane) and obtained a white solid, melting point: 71.3–71.8 °C (0.25 mmol, 82.2 mg, 84 %), R_f = 0.4 (hexane). ¹H NMR (400

MHz, CDCl₃): δ 7.30 (d, J = 7.4 Hz, 2H), 7.24 (d, J = 7.2 Hz, 2H), 7.20 (t, J = 7.4 Hz, 1H), 2.65 (t, J = 19.6 Hz, 2H), 2.50 (tt, J = 12.0 Hz, J = 3.6 Hz, 1H), 2.22 (d, J = 12.4 Hz, 2H), 2.07 (q, J = 12.4 Hz, 2H), 1.93 (t, J = 13.2 Hz, 2H), 1.81 (d, J = 11.6 Hz, 2H) ppm. ¹³C **NMR** (126 MHz, CDCl₃): δ 146.3, 128.6, 127.0, 126.5, 118.9 (qt, J_{C-F} = 286.8 Hz, J_{C-F} = 35.7 Hz), 115.4 (tq, J_{C-F} = 257.0 Hz, J_{C-F} = 37.3 Hz), 69.2, 44.6 (t, J_{C-F} = 19.4 Hz), 43.2, 39.8, 29.4 ppm. ¹⁹F **NMR** (470 MHz, CDCl₃): δ -87.46 (s, 3F), -116.10 (t, J = 19.5 Hz, 2F). **HRMS** m/z (APCI): calcd. for C₁₅H₁₆ClF₅ [M]⁺: 326.0855; found: 326.0860.

Spectra:

0 CF₂CF₃ 0

2a (¹H NMR CDCl₃, 500 MHz)

-118.331 -118.368 -118.406

0 .CF₂CF₃

2a (¹⁹F NMR, CDCl₃, 470 MHz)

-118.192 -118.229 -118.266

MeO CF₂CF₃

2b (¹⁹F NMR, CDCl₃, 470 MHz)

0 CF₂CF₃ NC

2c (¹H NMR, CDCl₃, 500 MHz)

CF₂CF₃

2d (19F NMR, CDCl₃, 470 MHz)

0 CF₂CF₃ CI

2e (¹H NMR, CDCl₃, 500 MHz)

0 CF₂CF₃ CI

2e (19F NMR, CDCl₃, 470 MHz)

 $\underbrace{\left\{\begin{array}{c} -118.187\\ -118.225\\ -118.262\end{array}\right\}}$

Br CF2CF3

2f (19F NMR, CDCl₃, 470 MHz)

CF₂CF₃

2g (¹H NMR, CDCl₃, 500 MHz)

-7,280 -7,118 -7,1280 -7,1280 -6,488 -6,4

CF₂CF₃

2h (¹H NMR, CDCl₃, 400 MHz)

 $\left\{ \begin{array}{c} -118.194 \\ -118.232 \\ -118.269 \end{array} \right.$

CF₂CF₃

2h (19F NMR, CDCl₃, 470 MHz)

S35

CF₂CF₃

2i (¹H NMR, CDCl₃, 400 MHz)

 $\bigwedge^{-118.188}_{-118.25}$

CF₂CF₃

2i (19F NMR, CDCl₃, 470 MHz)

CF₂CF₃

2k (1H NMR, CDCl₃, 400 MHz)

0 ↓ CF₂CF₃

2l (¹⁹F NMR, CDCl₃, 470 MHz)

 $\underbrace{\left\{\begin{smallmatrix} -118.157\\ -118.194\\ -118.231\end{smallmatrix}\right\}}_{-118.231}$

---9.848

2m (¹H NMR, CDCl₃, 400 MHz)

2m (19F NMR, CDCl3, 470 MHz)

 $\xleftarrow{-118.205}{-118.243}$

CF₂CF₃ /

2n (¹⁹F NMR, CDCl₃, 470 MHz)

-133.688
-137.789
-137.789
-137.789
-137.789
-137.759
-137.759
-137.759
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203
-117.203<

7,7778 7,778 7,734 7,5587 7,5587 7,5587 7,5587 7,55877 7,55877 7,55877 7,558777 7

CF₂CF₃ O

20 (1H NMR, CDCl3, 400 MHz)

 $\frac{118.237}{118.275}$

.CF₂CF₃ `s ó O

20 (¹⁹F NMR, CDCl₃, 470 MHz)

2q (¹H NMR, CDCl₃, 400 MHz)

2q (19F NMR, CDCl₃, 470 MHz)

 $\bigwedge^{-118.244}_{-118.282}$

ON CF₂CF₃

2r (¹⁹F NMR, CDCl₃, 470 MHz)

-7.200

2s (1H NMR, CDCl₃, 400 MHz)

 $\bigwedge^{-118.218}_{-118.255}$

CF₂CF₃

2s (19F NMR, CDCl₃, 470 MHz)

 $\bigwedge^{-118.223}_{-118.260}$

S53

 $\stackrel{+117.923}{\leftarrow}_{-117.960}$

MeO_____CF2CF3

2v (19F NMR, CDCl₃, 470 MHz)

CF₂CF₃

2w (1H NMR, CDCl₃, 400 MHz)

S58

S59

7,448 6,714 6,8810 6,8714 6,5728

CF₂CF₃ 0^

2y (¹H NMR, CDCl₃, 400 MHz)

CF₂CF₃ O,

2y (19F NMR, CDCl3, 376 MHz)

 $\underbrace{+}^{-118.176}_{-118.213}$

CF₂CF₃

2z (19F NMR, CDCl3, 470 MHz)

CF₂CF₃ ∬ O

2aa (1H NMR, CDCl₃, 100 MHz)

$\begin{array}{c} 2.688\\ 2.649\\ 2.649\\ 2.550\\ 2.550\\ 2.5512\\ 2.5512\\ 2.5512\\ 2.5512\\ 2.5512\\ 2.5512\\ 2.5522\\ 2.$

_CI __CF₂CF₃

2ab" (1H NMR, CDCl₃, 400 MHz)

S67

3 (19F NMR, CDCl₃, 376 MHz)

 $\underbrace{\left\{\begin{smallmatrix} -119.1.59\\ -119.208\\ -119.257\end{smallmatrix}\right\}}$

4 (¹H NMR, CDCl₃, 400 MHz)

Ö

4 (19F NMR, CDCl₃, 400 MHz)

MeO

ò

6 (¹H NMR, CDCl₃, 400 MHz)

6 (¹⁹F NMR, CDCl₃, 376 MHz)

MeO

0.23 3.00 ↓ -95 -100 f1 (ppm) 10 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -110 -120 -130 -140 -150 -160

 $\left\{\begin{array}{c} -119.251 \\ -119.300 \\ -1119.300 \\ -1119.349 \end{array}\right.$

0 CF₂CF₃ || 0 MeO

7 (¹⁹F NMR, CDCl₃, 376 MHz)

S76

Caller Control Cont

(¹H NMR, CDCl₃, 400 MHz)

13 (¹H NMR, CDCl₃, 400 MHz)

---118.565