Supporting Information Ultrathin lithium aluminate nanoflakes inlaid sulfur as cathode material for lithium-sulfur batteries with high areal capacity Arnab Ghosh, 1,2,3 Ajit Kumar, 1,2,3 Amlan Roy, 3 Cuong Nguyen, 2 Aakash Ahuja, 3 Md. Adil, 3 Manjunath Chatti,² Mega Kar,^{2,*} Douglas R. MacFarlane,^{2,*} and Sagar Mitra^{3,*} ¹IITB-Monash Research Academy, Powai, Mumbai 400076, India. ²ARC Centre of Excellence for Electromaterials Science, School of Chemistry, Monash University, Clayton, Victoria 3800, Australia. ³Electrochemical Energy Laboratory, Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India. **Corresponding authors** *E-mail: mega.kar@monash.edu *E-mail: douglas.macfarlane@monash.edu *E-mail: sagar.mitra@iitb.ac.in S-1 ### **List of supporting contents** Figure S1: Elemental mapping of LiAlO₂ Figure S2: XRD pattern of LiAlO₂ Figure S3: Elemental mapping on S@LiAlO₂ Figure S4: TEM image of S@LiAlO₂ Figure S5: XRD patterns of sulfur, LiAlO₂ and S@LiAlO₂ **Figure S6:** TGA profile of S@LiAlO₂ **Figure S7:** Discharge profiles of S@LiAlO₂ cathode Figure S8: Average cell potential calculation **Table S1:** Comparison table Figure S9: Spider chart Figure S10: Measurement of ionic conductivity of LiAlO₂ Figure S11: Electrochemical impedance spectra Figure S12: Elemental mapping of S@LiAlO₂ loaded on carbon cloth Figure S13: Polysulfide adsorption experiment Figure S14: SEM image of polysulfide adsorbed LiAlO₂ Figure S15: Schematic of electrochemical processes in different cathodes **Figure S16:** Self-discharge study **Figure S17:** Dissolution study Figure S18: SEM image of fresh S@LiAlO₂ cathode Figure S19: SEM image of cycled S@LiAlO₂ cathode # Elemental mapping of LiAlO₂ Figure S1: (a–c) SEM image and elemental mapping of LiAlO₂ nanoflakes. # XRD pattern of LiAlO₂ Figure S2: X-ray diffraction pattern of ultrathin α -LiAlO₂ nanoflakes. # Elemental mapping on S@LiAlO₂ **Figure S3:** Elemental mapping recorded on a S@LiAlO₂ composite particle shows a uniform distribution of constituent elements: sulfur, aluminium and oxygen. ### TEM image of S@LiAlO₂ **Figure S4:** TEM image of S@LiAlO₂ composite shows LiAlO₂ nanoflakes are strongly adhered on the surface of the sulfur microparticles. # XRD patterns of elemental sulfur, LiAlO $_2$ and S@LiAlO $_2$ **Figure S5:** (a) X-ray diffraction patterns of elemental sulfur, ultrathin α -LiAlO₂ nanoflakes and S@LiAlO₂ composite, (b) merged XRD pattern of sulfur and S@LiAlO₂ composite. ### TGA profile of S@LiAlO₂ Figure S6: TGA profile of S@LiAlO₂ composite confirms the presence of 77.3 wt% sulfur. Figure S7: Second and third cycle discharge profiles of the S@LiAlO₂ cathode at 0.2 C. ### Calculation of average cell potential For multistep reactions, where a cell exhibits more than one discharge plateaus, following equation is used to calculate the average potential¹ $$Vavg = \frac{1}{\int_{Q1}^{Q2} dQ} \int_{Q1}^{Q2} VdQ$$ Where, $\int_{Q1}^{Q2} dQ$ represents the specific discharge capacity, and $\int_{Q1}^{Q2} VdQ$ (i.e., area under the curve) represents the corresponding specific discharge energy (w.r.t. the weight of sulfur). **Figure S8:** Second cycle discharge profile of (a) the S@CB cathode and (b) the S@LiAlO₂ cathode at 0.2 C current rate. #### Case-1: Nominal cell potential calculation for the Li-S cell containing S@CB cathode $\int_{Q1}^{Q2} dQ$ = specific discharge capacity of the S@CB cathode = 838.3 mA h $g_{(S)}^{-1}$ $\int_{Q1}^{Q2} V dQ$ = specific discharge energy (w.r.t. the wieght of sulfur) = 1707.7 W h $kg_{(S)}^{-1}$ Therefore, the average cell potential (V_{avg}) is estimated to be ~2.04 V. ### Case-2: Nominal cell potential calculation for the Li-S cell containing S@LiAlO2 cathode $\int_{0.01}^{0.2} dQ$ = specific discharge capacity of the S@LiAlO₂ cathode = 907.2 mA h g_(S)⁻¹ $\int_{0.0}^{0.2} V dQ = \text{specific discharge energy (w.r.t. the wieght of sulfur)} = 1921.7 \text{ W h kg}_{(S)}^{-1}$ Therefore, the average cell potential (V_{avg}) is estimated to be ~2.12 V. ### Performance comparison table | Sulfur hosts | Sulfur loading
in electrode,
mg cm ⁻² (wt%) | Initial capacity | | Cvcle | Capacity | | |--|--|--|--|--------|-------------------|------------| | | | Gravimetric capacity (per "g" of electrode) | Areal capacity
(mA h cm ⁻²) | number | loss per
cycle | References | | Ultrathin LiAlO ₂ nanoflakes | 5.4 (58 wt%) | 393 mA h g _{electrode} ⁻¹ @2C | 3.65 mA h cm ⁻² | 300 | 0.017% | This work | | | | 302 mA h g _{electrode} ⁻¹ @3C | 2.80 mA h cm ⁻² | 500 | 0.02% | | | Porous VN nanobubbles | 1.2 (62.5 wt%) | 600 mA h g _{electrode} ⁻¹ @2C | 1.15 mA h cm ⁻² | 1000 | 0.027% | 50 | | MnO ₂ nanosheets | 1.9 (56.6 wt%) | 628 mA h g _{electrode} ⁻¹ @0.5C | 2.11 mA h cm ⁻² | 1500 | 0.028% | 51 | | Co-Fe mixed phosphide nanocubes | 1.0 (64 wt%) | 552 mA h g _{electrode} ⁻¹ @1C | 0.86 mA h cm ⁻² | 500 | 0.043% | 52 | | TiN nanospheres | 1.1 (49.7 wt%) | 325 mA h g _{electrode} ⁻¹ @2C | 0.72 mA h cm ⁻² | 300 | 0.043% | 45 | | Ti ₃ C ₂ nanosheets | 1.8 (64.2 wt%) | 679 mA h g _{electrode} ⁻¹ @2C | 1.22 mA h cm ⁻² | 400 | 0.057% | 53 | | Hybrid VO ₂ -VN nanobelts | 1.7 (61.8 wt%) | 624 mA h g _{electrode} ⁻¹ @2C | 1.72 mA h cm ⁻² | 800 | 0.06% | 54 | | Hollow Co ₃ S ₄ nanoboxes | 1.2 (56 wt%) | 481 mA h g _{electrode} ⁻¹ @2C | 1.03 mA h cm ⁻² | 500 | 0.068% | 55 | | Co, N-dual doped
CNTs/CNS/CFC | 2.03 (13 wt%) | 120 mA h g _{electrode} ⁻¹ @0.5C | 1.88 mA h cm ⁻² | 250 | 0.07% | 56 | | CoO _x nanoflowers in N-doped CNTs | 1.25 (62.5 wt%) | 641 mA h g _{electrode} ⁻¹ @1C | 1.28 mA h cm ⁻² | 500 | 0.078% | 57 | | MoS _{2-x} nanoflakes | 1.5 (60 wt%) | 716 mA h g _{electrode} ⁻¹ @0.5C | 1.79 mA h cm ⁻² | 600 | 0.08% | 58 | | Activated
CNF/hollow Co ₃ S ₄ | 2.5 (53 wt%) | 505 mA h g _{electrode} ⁻¹ @1C | 2.38 mA h cm ⁻² | 450 | 0.08% | 59 | | CoOOH
microsheets | 1.15 (64.2 wt%) | 417 mA h g _{electrode} ⁻¹ @1C | 0.75 mA h cm ⁻² | 500 | 0.084% | 60 | | N-doped
CNT@Co-SnS ₂ | 3.0 (52 wt%) | 552 mA h g _{electrode} ⁻¹ @0.64C | 3.18 mA h cm ⁻² | 300 | 0.16% | 61 | **Table S1:** Comparison table shows the beneficial influence of different sulfur hosts on the electrochemical performance of sulfur cathode. The electrolytes used in all of these works are comprised of LiTFSI+LiNO₃ in 1:1 solvent mixture of DME and DOL. The table is arranged in the ascending order of amount of capacity loss per cycle. #### Spider chart **Figure S9:** Spider chart compares and manifests the effective role of the ultrathin LiAlO₂ nanoflakes as sulfur host with other polar additives. The plot reveals the benefit of using ultrathin LiAlO₂ nanoflakes as an effective sulfur host in terms of promoting the higher utilization of active material (areal capacity) with unprecedented cycling stability (capacity retention after 300 cycles), even with high sulfur loading of 5.4 mg cm⁻². Long-term cycling performance of different cathodes at the current rate of 2C are considered for comparison. #### Measurement of ionic conductivity of LiAlO₂ The ionic conductivity of our as-prepared α -LiAlO₂ was measured using a broadband dielectric spectrometer (Novocontrol Technologies, Concept 80). To measure the dc conductivity (σ_{dc}) of the sample, a pellet (diameter = 1 cm, thickness = 0.2 cm) was prepared by compressing sample at a pressure of 3.5 tons for 1 min. The as-prepared LiAlO₂ nanoflakes sample exhibits an ionic conductivity of 1.6 \times 10⁻⁵ S cm⁻¹ at room-temperature. The conductivity of α -LiAlO₂ sample was found to be enhanced with raising the temperature. **Figure S10:** Arrhenius plot: change in ionic conductivity of LiAlO₂ nanoflakes with temperature variation. ### Electrochemical impedance spectra **Figure S11:** EIS spectra of fresh Li-S cells containing (a) S@CB cathode and (b) $S@LiAlO_2$ cathode at OCV. # Elemental mapping of S@LiAlO2 loaded carbon cloth Figure S12: SEM images and elemental mapping of S@LiAlO₂ loaded on carbon cloth. #### Polysulfide adsorption experiment In order to confirm the polysulfide adsorption ability of ultrathin LiAlO₂ nanoflakes, an adsorption experiment was performed. **Figure S10a** clearly shows that after the incorporation of LiAlO₂ powder, the deep brown color of lithium polysulfide (Li₂S₆) solution turned colorless, indicating a strong affinity towards the polysulfides. From the UV-Vis curves the characteristic absorption peaks of the S₆²⁻ anion observed at 280, 300 and 340 nm, respectively,² disappeared after the incorporation of LiAlO₂ into the polsyulfide solution. The strong interaction between LiAlO₂ and Li₂S₆ is also evident from X-ray photoelectron spectroscopy (**Figure S10b**). The S 2p_{3/2} peak at the binding energy of 161.8 eV indicates formation of Al–S bond through Lewis acid-based interaction between the S₆²⁻ anion (Lewis base) and the positively charged Al-center in LiAlO₂ (Lewis acid). The SEM image shows an uniform layer of lithium polysulfide adsorbed on the surface of LiAlO₂ nanoflakes (**Figure S11**). **Figure S13:** (a) Visualization of polysulfide adsorption by LiAlO₂ and corresponding UV-Vis curves; b) S 2p_{3/2} XPS spectra of pristine LiAlO₂ and polysulfide adsorbed LiAlO₂ samples. # SEM image of LiPS adsorbed LiAlO₂ Figure S14: SEM image of polysulfide adsorbed LiAlO₂ nanoflakes. #### Schematic of electrochemical processes in different cathodes **Figure S15:** Schematic of different electrochemical processes in pure sulfur cathode and the S@LiAlO₂ cathode during discharge process. #### **Self-discharge study** **Figure S16:** (a) Open-circuit voltage change of cycled cells (1 cycle at 0.2C) containing the S@CB and S@LiAlO₂ cathodes during resting; (b) first discharge profiles of the cells containing S@CB and S@LiAlO₂ cathodes after rest; (c) FTIR spectra of sulfur, LiAlO₂ and S@LiAlO₂; (d) magnified view of the spectra between 1200 cm⁻¹ to 1600 cm⁻¹. # **Dissolution study** **Figure S17:** Dissolution study of fresh S@LiAlO₂ cathode: the obvious no change in the color of electrolyte confirms that the uniform distribution of ultrathin LiAlO₂ nanoflakes on the surface of sulfur restricts the gradual dissolution of active material. # SEM image of fresh S@LiAlO2 cathode Figure S18: SEM image of fresh S@LiAlO₂ cathode before cycling. ### SEM image of cycled S@LiAlO2 cathode **Figure S19:** (a) SEM image of the cycled S@LiAlO₂ cathode after 300 cycles at fully charged state; (b–d) aluminium, sulfur and carbon mapping acquired on the cathode. #### References - 1. Xue, L.; Xin, S.; Goodenough, J. B; Angell, C. A. An Inverse Aluminum Battery: Putting the Aluminum as the Cathode. *ACS Energy Lett.* **2017**, *2*, 1534–1538. - 2. Zhou, G.; Zhao, Y.; Zu, C.; Manthiram, A. Free-Standing TiO₂ Nanowire-Embedded Graphene Hybrid Membrane for Advanced Li/Dissolved Polysulfide Batteries. *Nano Energy* **2015**, *12*, 240–249.