Supporting Information ## Size-Tunable Synthesis of Palladium Nanoparticles Confined within Topologically Distinct Metal-Organic Frameworks for Catalytic Dehydrogenation of Methanol Yu-Hsiang Wang, a,b Cheng-Hsun Chuang, Te-An Chiu, a,b Chung-Wei Kung, c* and Wen-Yueh Yu $^{\rm a,b*}$ - ^a Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan, 10617. - ^b Advanced Research Center for Green Materials Science and Technology, Taipei, Taiwan, 10617. - ^c Department of Chemical Engineering, National Cheng Kung University, Tainan City, Taiwan, 70101. - * Corresponding authors: cwkung@mail.ncku.edu.tw (C.-W. Kung), wenyueh@ntu.du.tw (W.-Y. Yu) **Table S1**. Selected summary of catalytic performance for methanol dehydrogenation over Pd-based catalysts in this work and reported in literatures. | Catalyst | Prep.
Method ^a | Pd
loading
(wt%) | Rxn
temp.
(°C) | H ₂ production rate
(mmol g-Pd ⁻¹ min ⁻¹) | H ₂ -TOF (h ⁻¹) | Ref. | |---|------------------------------|------------------------|----------------------|--|--|------| | Pd@UiO-66 | SIM | 5.2 | 225 | 137 | 874 ^d | [1] | | | | | 200 | 72 | 459 ^d | [1] | | Pd@NU-902 | SIM | 2.6 | 225 | 102 | 651 ^d | [1] | | | | | 200 | 46 | 291 ^d | [1] | | Pd@PCN-222 | SIM | 1.3 | 225 | 87 | 556 ^d | [1] | | | | | 200 | 41 | 259 ^d | [1] | | Pd/ZrO ₂ | IMP | 5.0 | 200 | 7^{b} | 43 | [2] | | Pd/ZrO ₂ | CP | 10.0 | 200 | 10 ^b | 65 | [2] | | Pd/ZrO ₂ | CP | 15.0 | 200 | 11^{b} | 68 | [2] | | Pd/Pr_2O_3 | CP | 15.0 | 200 | 16 ^b | 101 | [2] | | Pd/CeO ₂ | CP | 15.0 | 200 | 15 ^b | 94 | [2] | | Pd/TiO ₂ | CP | 15.0 | 200 | 5 ^b | 29 | [2] | | Pd/ZrO ₂ | DP | 2.0 | 200 | 54 ^c | 346 ^{c,d} | [3] | | Pd/ZrO ₂ | IMP | 2.0 | 200 | 21 ^c | 133 ^{c,d} | [3] | | Pd/CeO ₂ -Al ₂ O ₃ | SG | 5.0 | 225 | 30° | 192 ^{c,d} | [4] | | Pd/Al ₂ O ₃ | ALD | 1.6 | 250 | 203 | 1300 | [5] | ^a Abbreviations for preparation methods including solvothermal deposition in MOF (SIM), impregnation (IMP), coprecipitation (CP), deposition-precipitation (DP), sol-gel (SG), and atomic layer deposition (ALD). ^b calculated from the reported values of H₂-TOF and Pd loading. ^c calculated from reported methanol conversion assuming 100% H₂ selectivity. ^d normalized by total number of Pd atoms in catalysts. ^[1] This work. ^[2] Y. Usami, K. Kagawa, M. Kawazoe, Y. Matsumura, H. Sakurai and M. Haruta, *Appl. Catal. A-Gen.*, 1998, 171, 123-130. ^[3] Y. Matsumura, M. Okumura, Y. Usami, K. Kagawa, H. Yamashita, M. Anpo and M. Haruta, *Catal. Lett.*, 1997, 44, 189-191. ^[4] J. C. Brown and E. Gulari, Catal. Commun., 2004, 5, 431-436 ^[5] H. Feng, J. W. Elam, J. A. Libera, W. Setthapun and P. C. Stair, *Chem. Mater.*, 2010, 22, 3133-3142. **Figure S1.** PXRD patterns of Pd@Zr-MOFs. Figure S2. SEM images of (a) UiO-66, (b) NU-902, and (c) PCN-222. **Figure S3.** EDS line scans (yellow lines) and normalized EDS signals of (a) Pd@UiO-66, (b) Pd@NU-902, and (c) Pd@PCN-222. **Figure S4.** Size distribution of Pd nanoparticles in Pd@Zr-MOFs. **Figure S5.** Infrared spectra of (a) UiO-66, (b) NU-902, and (c) PCN-222 before and after Pd incorporation by solvothermal deposition in MOFs (SIM) technique. **Figure S6.** Catalytic methanol dehydrogenation over pristine Zr-MOFs and Pd@Zr-MOFs. **Figure S7.** Catalytic methanol decarbonylation over Pd@Zr-MOFs. (a) CO production rate from methanol decomposition as a function of reaction temperature, and (b) Arrhenius plot for data in (a). The activation energies for Pd@UiO-66, Pd@NU-902, Pd@PCN-222 are 58, 76, and 77 kJ mol⁻¹. **Figure S8.** Time on stream of H_2 and CO production rates from methanol dehydrogenation over Pd@UiO-66 at 200 °C. **Figure S9.** PXRD patterns of Pd@UiO-66 before and after catalytic reaction. Reaction condition: 25 mg of catalyst, methanol inlet flow (1 mL/h), methanol: N_2 = 1:4 (molar ratio), N_2 flow rate (40 mL/min), time on stream reaction at 200 °C for 6 hours. **Figure S10.** Infrared spectra of Pd@UiO-66 before and after exposing to methanol for 60 min at 200 °C. **Figure S11.** TEM images and elemental mapping (Red: Pd; Green: Zr) of (a) Pd@UiO-66, (b) Pd@NU-902, and (c) Pd@PCN-222 after catalytic reaction. Reaction condition: 25 mg of catalyst, methanol inlet flow (1 mL/h), methanol: $N_2 = 1:4$ (molar ratio), N_2 flow rate (40 mL/min), time on stream reaction at 200 °C for 6 hours. **Figure S12.** (a) Nitrogen adsorption-desorption isotherm and (b) DFT pore size distribution of Pd@UiO-66 after catalytic reaction. Reaction condition: 25 mg of catalyst, methanol inlet flow (1 mL/h), methanol: $N_2 = 1:4$ (molar ratio), N_2 flow rate (40 mL/min), time on stream reaction at 200 °C for 6 hours. The calculated BET surface area is also shown in (a). **Figure S13.** In-situ DRIFTS spectra of UiO-66 in the flow of methanol/ N_2 followed by N_2 at 150 °C. **Figure S14.** In-situ DRIFTS spectra of Pd@NU-902 in the flow of methanol/ N_2 followed by N_2 at 150 °C. **Figure S15.** In-situ DRIFTS spectra of Pd@PCN-222 in the flow of methanol/ N_2 followed by N_2 at 150 °C. **Figure S16.** Infrared spectra of (a) UiO-66, (b) NU-902, and (c) PCN-222 before and after exposing to methanol at 150 °C for 15 min.