Supporting Information

Size-Tunable Synthesis of Palladium Nanoparticles Confined within Topologically Distinct Metal-Organic Frameworks for Catalytic Dehydrogenation of Methanol

Yu-Hsiang Wang, a,b Cheng-Hsun Chuang, Te-An Chiu, a,b Chung-Wei Kung, c* and Wen-Yueh Yu $^{\rm a,b*}$

- ^a Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan, 10617.
- ^b Advanced Research Center for Green Materials Science and Technology, Taipei, Taiwan, 10617.
- ^c Department of Chemical Engineering, National Cheng Kung University, Tainan City, Taiwan, 70101.
- * Corresponding authors: cwkung@mail.ncku.edu.tw (C.-W. Kung), wenyueh@ntu.du.tw (W.-Y. Yu)

Table S1. Selected summary of catalytic performance for methanol dehydrogenation over Pd-based catalysts in this work and reported in literatures.

Catalyst	Prep. Method ^a	Pd loading (wt%)	Rxn temp. (°C)	H ₂ production rate (mmol g-Pd ⁻¹ min ⁻¹)	H ₂ -TOF (h ⁻¹)	Ref.
Pd@UiO-66	SIM	5.2	225	137	874 ^d	[1]
			200	72	459 ^d	[1]
Pd@NU-902	SIM	2.6	225	102	651 ^d	[1]
			200	46	291 ^d	[1]
Pd@PCN-222	SIM	1.3	225	87	556 ^d	[1]
			200	41	259 ^d	[1]
Pd/ZrO ₂	IMP	5.0	200	7^{b}	43	[2]
Pd/ZrO ₂	CP	10.0	200	10 ^b	65	[2]
Pd/ZrO ₂	CP	15.0	200	11^{b}	68	[2]
Pd/Pr_2O_3	CP	15.0	200	16 ^b	101	[2]
Pd/CeO ₂	CP	15.0	200	15 ^b	94	[2]
Pd/TiO ₂	CP	15.0	200	5 ^b	29	[2]
Pd/ZrO ₂	DP	2.0	200	54 ^c	346 ^{c,d}	[3]
Pd/ZrO ₂	IMP	2.0	200	21 ^c	133 ^{c,d}	[3]
Pd/CeO ₂ -Al ₂ O ₃	SG	5.0	225	30°	192 ^{c,d}	[4]
Pd/Al ₂ O ₃	ALD	1.6	250	203	1300	[5]

^a Abbreviations for preparation methods including solvothermal deposition in MOF (SIM), impregnation (IMP), coprecipitation (CP), deposition-precipitation (DP), sol-gel (SG), and atomic layer deposition (ALD). ^b calculated from the reported values of H₂-TOF and Pd loading. ^c calculated from reported methanol conversion assuming 100% H₂ selectivity. ^d normalized by total number of Pd atoms in catalysts.

^[1] This work.

^[2] Y. Usami, K. Kagawa, M. Kawazoe, Y. Matsumura, H. Sakurai and M. Haruta, *Appl. Catal. A-Gen.*, 1998, 171, 123-130.

^[3] Y. Matsumura, M. Okumura, Y. Usami, K. Kagawa, H. Yamashita, M. Anpo and M. Haruta, *Catal. Lett.*, 1997, 44, 189-191.

^[4] J. C. Brown and E. Gulari, Catal. Commun., 2004, 5, 431-436

^[5] H. Feng, J. W. Elam, J. A. Libera, W. Setthapun and P. C. Stair, *Chem. Mater.*, 2010, 22, 3133-3142.

Figure S1. PXRD patterns of Pd@Zr-MOFs.

Figure S2. SEM images of (a) UiO-66, (b) NU-902, and (c) PCN-222.

Figure S3. EDS line scans (yellow lines) and normalized EDS signals of (a) Pd@UiO-66, (b) Pd@NU-902, and (c) Pd@PCN-222.

Figure S4. Size distribution of Pd nanoparticles in Pd@Zr-MOFs.

Figure S5. Infrared spectra of (a) UiO-66, (b) NU-902, and (c) PCN-222 before and after Pd incorporation by solvothermal deposition in MOFs (SIM) technique.

Figure S6. Catalytic methanol dehydrogenation over pristine Zr-MOFs and Pd@Zr-MOFs.

Figure S7. Catalytic methanol decarbonylation over Pd@Zr-MOFs. (a) CO production rate from methanol decomposition as a function of reaction temperature, and (b) Arrhenius plot for data in (a). The activation energies for Pd@UiO-66, Pd@NU-902, Pd@PCN-222 are 58, 76, and 77 kJ mol⁻¹.

Figure S8. Time on stream of H_2 and CO production rates from methanol dehydrogenation over Pd@UiO-66 at 200 °C.

Figure S9. PXRD patterns of Pd@UiO-66 before and after catalytic reaction. Reaction condition: 25 mg of catalyst, methanol inlet flow (1 mL/h), methanol: N_2 = 1:4 (molar ratio), N_2 flow rate (40 mL/min), time on stream reaction at 200 °C for 6 hours.

Figure S10. Infrared spectra of Pd@UiO-66 before and after exposing to methanol for 60 min at 200 °C.

Figure S11. TEM images and elemental mapping (Red: Pd; Green: Zr) of (a) Pd@UiO-66, (b) Pd@NU-902, and (c) Pd@PCN-222 after catalytic reaction. Reaction condition: 25 mg of catalyst, methanol inlet flow (1 mL/h), methanol: $N_2 = 1:4$ (molar ratio), N_2 flow rate (40 mL/min), time on stream reaction at 200 °C for 6 hours.

Figure S12. (a) Nitrogen adsorption-desorption isotherm and (b) DFT pore size distribution of Pd@UiO-66 after catalytic reaction. Reaction condition: 25 mg of catalyst, methanol inlet flow (1 mL/h), methanol: $N_2 = 1:4$ (molar ratio), N_2 flow rate (40 mL/min), time on stream reaction at 200 °C for 6 hours. The calculated BET surface area is also shown in (a).

Figure S13. In-situ DRIFTS spectra of UiO-66 in the flow of methanol/ N_2 followed by N_2 at 150 °C.

Figure S14. In-situ DRIFTS spectra of Pd@NU-902 in the flow of methanol/ N_2 followed by N_2 at 150 °C.

Figure S15. In-situ DRIFTS spectra of Pd@PCN-222 in the flow of methanol/ N_2 followed by N_2 at 150 °C.

Figure S16. Infrared spectra of (a) UiO-66, (b) NU-902, and (c) PCN-222 before and after exposing to methanol at 150 °C for 15 min.